Skip to main content
Dryad logo

Data from: One-locus-several-primers: a strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies

Citation

Corse, Emmanuel et al. (2019), Data from: One-locus-several-primers: a strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies, Dryad, Dataset, https://doi.org/10.5061/dryad.2ck7120

Abstract

In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets’ complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the “one‐locus‐several‐primer‐sets” (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey–predator interactions.

Usage Notes

Location

Prévost Lagoon France
Durance River France
Saint-Bonnet-sur-Gironde France
Vilhonneur France
Lokoundje River Cameroon
Vaccarès Lagoon France
Monkey Mountain SW Kourou French Guiana
Rancogne France