Data from: Dispersal-related plant traits are associated with range size in the Atlantic Forest
Data files
May 16, 2024 version files 732.68 KB
-
Phylogenetic_tree_AtlanticForestFlora.tre
56.14 KB
-
Range_Sizes_AtlanticForestFlora.xlsx
185.12 KB
-
README.md
31.24 KB
-
TraitData_AtlanticForestFlora.xlsx
460.19 KB
Abstract
Aim: The efficiency of animal-mediated seed dispersal is threatened by declines of animal populations, especially in tropical forests. We hypothesise that large-seeded plants with animal-mediated dispersal tend to have limited geographic ranges and face an increased risk of extinction due to the potential decline in seed dispersal by large-bodied fruit-eating and seed-dispersing animals (frugivores)
Location: Atlantic Forest, Brazil, South America
Taxon: Angiosperms
Methods: First, we collected dispersal-related trait (dispersal syndrome, fruit size, seed size), growth form (tree, climber, other) and preferred vegetation type (open, closed) data for 1,052 Atlantic Forest plant species. Next, we integrated these with occurrence records, extinction risk assessments, and phylogenetic trees. Finally, we performed phylogenetic generalized least squares (PGLS) regressions to test the direct and interactive effects of dispersal-related traits and vegetation type on geographical range size.
Results: Large-seeded species had smaller range sizes than small-seeded species, but only for species with animal-mediated dispersal, not for those dispersed by abiotic mechanisms. However, plants with abiotic dispersal had overall smaller range sizes than plants with animal-mediated dispersal. Furthermore, we found that species restricted to forests had smaller ranges than those occurring in open or mixed vegetation. Finally, at least 29% of the Atlantic Forest flora is threatened by extinction, but this was not related to plant dispersal syndromes.
Main Conclusions: Large-seeded plants with animal-mediated dispersal may be suffering from dispersal limitation, potentially due to past and ongoing defaunation of large-bodied frugivores, leading to small range sizes. Other factors, such as deforestation and fragmentation, will probably modulate such effects of dispersal on range size, and ultimately extinction. Our study sheds light on the relationship between plant traits, mutualistic interactions and distribution that are key to the functioning of tropical forests.
https://doi.org/10.5061/dryad.2fqz612wm
Phylogeny, trait data, range size and extinction risk estimates of plant species in the Atlantic Forest of Brazil. See data description on how the data were obtained and assembled.
Description of the data and file structure
Three data files are uploaded: the phylogeny, and two Excel files, one with trait data (raw and processed for analyses) and one with range size and extinction risk estimates.
Sharing/Access information
Data was derived from the following sources,:
Alberti, L. F., Hirt, J. A. N., Junior, D. B. F. M., Steckel, M., Tombini, C. S., & Longhi, S. J. (2000). Ciência e Natura. Ciência e Natura, 22(22), 145–160. https://doi.org/10.5902/2179460X27116
Alves-Costa, C. P., & Eterovick, P. C. (2007). Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica, 32(1), 77–92. https://doi.org/10.1016/J.ACTAO.2007.03.001
Barbosa, J. I. de S., da Silva, J. A., Gomes, J. M., Marangon, Lu. C., & Feliciano, A. L. P. (2014). Florística e caracterização da síndrome de dispersão de espécies arbustiva-arbóreas em fragmento de mata atlântica, Zona da Mata Norte de Pernambuco. January, 624–627. https://doi.org/10.12702/viii.simposfloresta.2014.230-664-1
Barbosa, L. M., Shirasuna, R. T., Lima, F. C. de, & Ortiz, P. R. T. (2015). Lista de espécies indicadas para Restauração Ecológica para diversas regiões do Estado de São Paulo. In VI Simpósio de Restauração Ecológica.
Barros, V. M. de S., Carvalho, P. A. de, & Marangon, H. V. (2018). Caracterização da frutificação e síndrome de dispersão de espécies arbóreas em fragmentos de Mata Atlântica em Santa Bárbara do Tugúrio e Barbacena - MG. Cadernos de Agroecologia, 13(1). http://cadernos.aba-agroecologia.org.br/cadernos/article/view/868
Bello, C., Galetti, M., Montan, D., Pizo, M. A., Mariguela, T. C., Culot, L., Bufalo, F., Labecca, F., Pedrosa, F., Constantini, R., Emer, C., Silva, W. R., da Silva, F. R., Ovaskainen, O., & Jordano, P. (2017). Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology, 98(6), 1729. https://doi.org/10.1002/ECY.1818/SUPPINFO
Budke, J. C., Athayde, E. A., Giehl, E. L. H., Záchia, R. A., & Eisinger, S. M. (2005). Composição florística e estratégias de dispersão de espécies lenhosas em uma floresta ribeirinha, arroio Passo das Tropas, Santa Maria, RS, Brasil. Iheringia, Série Botânica., 60(1), 17–24. https://isb.emnuvens.com.br/iheringia/article/view/202
Butt, N., & Gallagher, R. (2018). Using species traits to guide conservation actions under climate change. Climatic Change, 151(2), 317–332. https://doi.org/10.1007/S10584-018-2294-Z/TABLES/3
Carvalho, F. S., & Sartori, Â. L. B. (2015). Reproductive phenology and seed dispersal syndromes of woody species in the Brazilian Chaco. Journal of Vegetation Science, 26(2), 302–311. https://doi.org/10.1111/JVS.12227
Ciconini, G., Favaro, S. P., Roscoe, R., Miranda, C. H. B., Tapeti, C. F., Miyahira, M. A. M., Bearari, L., Galvani, F., Borsato, A. v., Colnago, L. A., & Naka, M. H. (2013). Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, 45, 208–214. https://doi.org/10.1016/J.INDCROP.2012.12.008
Corrêa, C., Corneta, C. M., Scultori, C., & von Matter, S. (n.d.). Síndromes de dispersão em fragmentos de cerrado no município de Itirapina/SP.
da Silva, H. R., de Britto-Pereira, M. C., Caramaschi, U., & de Britto-Pereira, M. C. (1989). Frugivory and Seed Dispersal by Hyla truncata, a Neotropical Treefrog. Copeia, 1989(3), 781. https://doi.org/10.2307/1445517
da Silva, M. C. N. A., & Rodal, M. J. N. (2009). Padrões das síndromes de dispersão de plantas em áreas com diferentes graus de pluviosidade, PE, Brasil. Acta Botanica Brasilica, 23(4), 1040–1047. https://doi.org/10.1590/S0102-33062009000400014
Dahl, C., Ctvrtecka, R., Gripenberg, S., Lewis, O. T., Segar, S. T., Klimes, P., Sam, K., Rinan, D., Filip, J., Lilip, R., Kongnoo, P., Panmeng, M., Putnaul, S., Reungaew, M., Rivera, M., Barrios, H., Davies, S. J., Bunyavejchewin, S., Wright, J. S., … Basset, Y. (2019). The insect-focused classification of fruit syndromes in tropical rain forests: An inter-continental comparison. Biotropica, 51(1), 39–49. https://doi.org/10.1111/BTP.12622
Dantas, V. L., & Pausas, J. G. (2020). Megafauna biogeography explains plant functional trait variability in the tropics. Global Ecology and Biogeography, 29(8), 1288–1298. https://doi.org/10.1111/GEB.13111
David, J. P., Manakadan, R., & Ganesh, T. (2015). Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: | Ashoka Trust for Research in Ecology and the Environment. Tropical Ecology, 56(1), 41–55. https://www.atree.org/journal-articles/frugivory-and-seed-dispersal-birds-and-mammals-coastal-tropical-dry-evergreen |
de Campos, É. P., Vieira, M. F., da Silva, A. F., Martins, S. V., da Silva Carmo, F. M., Moura, V. M., & de Saboya Ribeiro, A. S. (2009). Chuva de sementes em Floresta Estacional Semidecidual em Viçosa, MG, Brasil. Acta Botanica Brasilica, 23(2), 451–458. https://doi.org/10.1590/S0102-33062009000200017
De, J. I., Barbosa, S., da Silva, J. A., Gomes, J. M., Marangon, L. C., & Feliciano, A. L. P. (n.d.). Florística e caracterização da síndrome de dispersão de espécies arbustiva-arbóreas em fragmento de mata atlântica, Zona da Mata Norte de Pernambuco. https://doi.org/10.12702/VIII.SimposFloresta.2014.230-664-1
de Maçaneiro, J. P., de Gasper, A. L., Galvão, F., & Schorn, L. A. (2018). Dispersion and aggregation patterns of tree species in Araucaria Forest, Southern Brazil. Anais Da Academia Brasileira de Ciências, 90(2), 2397–2408. https://doi.org/10.1590/0001-3765201820170150
de Melo, B. T., Mota, T., Schlindwein, C., Antonini, Y., & Oliveira, R. (2018). Floral colour change in Byrsonima variabilis (Malpighiaceae) as a visual cue for pollen but not oil foraging by oil-collecting bees. Science of Nature, 105(7–8), 1–10. https://doi.org/10.1007/S00114-018-1572-Y/FIGURES/5
Delmas, C. E. L., Kooyman, R. M., & Rossetto, M. (2020). Evolutionary constraints and adaptation shape the size and colour of rain forest fruits and flowers at continental scale. Global Ecology and Biogeography, 29(5), 830–841. https://doi.org/10.1111/GEB.13065
Donatti, C. I., Galetti, M., Pizo, M. A., Guimarães, P. R., & Jordano, P. (2007). Living in the land of ghosts: Fruit traits and the importance of large mammals as seed dispersers in the pantanal, Brazil. Seed Dispersal: Theory and Its Application in a Changing World, 104–123. https://doi.org/10.1079/9781845931650.0104
D’orazio, F. de A. E., & Catharino, E. L. M. (2013). Estrutura e florística de dois fragmentos de florestas aluviais no Vale do rio Paraíba do Sul, SP, Brasil. Hoehnea, 40(3), 567–582. https://doi.org/10.1590/S2236-89062013000300015
Duarte, L. D. S., Dos-Santos, M. M. G., Hartz, S. M., & Pillar, V. D. (2006). Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Austral Ecology, 31(4), 520–528. https://doi.org/10.1111/J.1442-9993.2006.01602.X
Escalante, S., Montaña, C., & Orellana, R. (2004). Demography and potential extractive use of the liana palm, Desmoncus orthacanthos Martius (Arecaceae), in southern Quintana Roo, Mexico. Forest Ecology and Management, 187(1), 3–18. https://doi.org/10.1016/S0378-1127(03)00228-7
Faria, R. A. P. G. de, Coelho, M. de F. B., Albuquerque, M. C. de F. e, & Azevedo, R. A. B. de. (2012). Phenology of Species in the Cerrado of Mato Grosso State, Brazil - Brosimum gaudichaudii Trécul (Moraceae). Phenology and Climate Change. https://doi.org/10.5772/34960
Felippi, M., Maffra, C. R. B., Cantarelli, E. B., Araújo, M. M., & Longhi, S. J. (2012). Fenologia, morfologia e análise de sementes de Cordia trichotoma (Vell.) Arráb. ex Steud. Ciência Florestal, 22(3), 631–641. https://doi.org/10.5902/198050986629
Ferrari, S. F., & Rímoli, J. (2008). A Primatologia no Brasil (Vol. 9, Issue 3). https://doi.org/10.1590/s0037-86821985000300013
Fortunato, M. E. M., & Quirino, Z. G. M. (2016). Effects of fragmentation on the reproductive phenology of tree species present in edge and interior of Atlantic Forest in Paraiba. Rodriguésia, 67(3), 603–614. https://doi.org/10.1590/2175-7860201667305
Francisco, J. J. S., Rigueiral, L. H. G., & Scabbia, R. J. A. (2019). LEVANTAMENTO FITOSSOCIOLÓGICO NO ILHOTE DA PRAIA DE CAMBURIZINHO, SÃO SEBASTIÃO, SÃO PAULO. Revista Científica UMC.
Gagetti, B. L., Piratelli, A. J., & Piña-Rodrigues, F. C. M. (2016). Fruit color preference by birds and applications to ecological restoration. Brazilian Journal of Biology = Revista Brasleira de Biologia, 76(4), 955–966. https://doi.org/10.1590/1519-6984.05115
Galetti, M., Moleón, M., Jordano, P., Pires, M. M., Guimarães, P. R., Pape, T., Nichols, E., Hansen, D., Olesen, J. M., Munk, M., de Mattos, J. S., Schweiger, A. H., Owen-Smith, N., Johnson, C. N., Marquis, R. J., & Svenning, J. C. (2018). Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 93(2), 845–862. https://doi.org/10.1111/brv.12374
Galetti, M., Pizo, M. A., & Morellato, L. P. C. (2011). Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica, 11(1), 181–193. https://doi.org/10.1590/S1676-06032011000100019
Gómez, J. M., Schupp, E. W., & Jordano, P. (2019). Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biological Reviews, 94(3), 874–902. https://doi.org/10.1111/BRV.12481
Gonçalves da Silva, B., Koch, I., & Piratelli, A. J. (2020). Fruit and flower availability affect bird assemblages across two successional stages in the Atlantic Forest. Studies on Neotropical Fauna and Environment, 55(3), 203–215. https://doi.org/10.1080/01650521.2020.1743550
Grenha, V., Grenha, V., Macedo, M. V. de, Pires, A. S., & Monteiro, R. F. (2010). The role of Cerradomys Subflavus (Rodentia, Cricetidae) as seed predator and disperser of the palm Allagoptera arenaria. Mastozoología Neotropical. https://www.biodiversitylibrary.org/part/113668
Gressler, E., Pizo, M. A., & Morellato, L. P. C. (2006). Polinização e dispersão de sementes em Myrtaceae do Brasil. Brazilian Journal of Botany, 29(4), 509–530. https://doi.org/10.1590/S0100-84042006000400002
Guerin, N., & Durigan, G. (2015). Invasion impact by Pteridium arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae) on a neotropical savanna. Acta Botanica Brasilica, 29(2), 213–222. https://doi.org/10.1590/0102-33062014ABB3722
Guimarães, P. R., Galetti, M., & Jordano, P. (2008). Seed Dispersal Anachronisms: Rethinking the Fruits Extinct Megafauna Ate. PLOS ONE, 3(3), e1745. https://doi.org/10.1371/JOURNAL.PONE.0001745
Hawes, J. E., Vieira, I. C. G., Magnago, L. F. S., Berenguer, E., Ferreira, J., Aragão, L. E. O. C., Cardoso, A., Lees, A. C., Lennox, G. D., Tobias, J. A., Waldron, A., & Barlow, J. (2020). A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. Journal of Ecology, 108(4), 1373–1385. https://doi.org/10.1111/1365-2745.13358
Hernández-Brito, D., Romero-Vidal, P., Hiraldo, F., Blanco, G., Díaz-Luque, J. A., Barbosa, J. M., Symes, C. T., White, T. H., Pacífico, E. C., Sebastián-González, E., Carrete, M., & Tella, J. L. (2021). Epizoochory in Parrots as an Overlooked Yet Widespread Plant–Animal Mutualism. Plants 2021, Vol. 10, Page 760, 10(4), 760. https://doi.org/10.3390/PLANTS10040760
Hintze, C., Heydel, F., Hoppe, C., Cunze, S., König, A., & Tackenberg, O. (2013). D3: The Dispersal and Diaspore Database – Baseline data and statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics, 15(3), 180–192. https://doi.org/10.1016/J.PPEES.2013.02.001
Jacobi, C. M., & do Carmo, F. F. (2011). Life-forms, pollination and seed dispersal syndromes in plant communities on ironstone outcrops, SE Brazil. Acta Botanica Brasilica, 25(2), 395–412. https://doi.org/10.1590/S0102-33062011000200016
Jara-Guerrero, A., de la Cruz, M., & Méndez, M. (2011). Seed Dispersal Spectrum of Woody Species in South Ecuadorian Dry Forests: Environmental Correlates and the Effect of Considering Species Abundance. Biotropica, 43(6), 722–730. https://doi.org/10.1111/J.1744-7429.2011.00754.X
Kelly, D. L., Tanner, E. V. J., Lughadha, E. M. N., & Kapos, V. (1994). Floristics and Biogeography of a Rain Forest in the Venezuelan Andes. Journal of Biogeography, 21(4), 421. https://doi.org/10.2307/2845760
Kimmel, T. M., do Nascimento, L. M., Piechowski, D., Sampaio, E. V. S. B., Rodal, M. J. N., & Gottsberger, G. (2010). Pollination and seed dispersal modes of woody species of 12-year-old secondary forest in the Atlantic Forest region of Pernambuco, NE Brazil. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(8), 540–547. https://doi.org/10.1016/J.FLORA.2009.12.022
Kuhlmann, M., & Ribeiro, J. F. (2016a). Evolution of seed dispersal in the Cerrado biome: ecological and phylogenetic considerations. Acta Botanica Brasilica, 30(2), 271–282. https://doi.org/10.1590/0102-33062015ABB0331
Kuhlmann, M., & Ribeiro, J. F. (2016b). Fruits and frugivores of the brazilian cerrado: Ecological and phylogenetic considerations. Acta Botanica Brasilica, 30(3), 495–507. https://doi.org/10.1590/0102-33062016abb0192
Laurindo, R. D. S., & Vizentin-Bugoni, J. (2020). Diversity of fruits in Artibeus lituratus diet in urban and natural habitats in Brazil: a review. Journal of Tropical Ecology, 36(2), 65–71. https://doi.org/10.1017/S0266467419000373
Lenzi, M., Eduardo Graipel, M., Zarur de Matos, J., Martins Fraga, A., Inácio Orth, A., San Vicente del Raspeig, C., & Vicente, S. (2012). Dispersão zoocórica e hidrocórica marítima de Opuntia monacantha (Willd.) Haw. (Cactaceae). Biotemas, 25(1), 47–53. https://doi.org/10.5007/2175-7925.2012V25N1P47
Liebsch, D., Bos Mikich, S., Fernando, R., Possette, S., Osmar, E., & Ribas, S. (2009). Levantamento florístico e síndromes de dispersão em remanescentes de Floresta Ombrófila Mista na região centro-sul do estado do Paraná. Hoehnea, 36(2), 233–248. https://doi.org/10.1590/S2236-89062009000200002
Lima, M. E. L. L., Cordeiro, I., & Moreno, P. R. (2011). Estrutura do componente arbóreo em Floresta Ombrófila Densa Montana no Parque Natural Municipal Nascentes de Paranapiacaba (PNMNP), Santo André, SP, Brasil. Hoehnea, 38(1), 73–96. https://doi.org/10.1590/S2236-89062011000100007
Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14668–14672. https://doi.org/10.1073/PNAS.1008773107/-/DCSUPPLEMENTAL
Lorenzi, Harri; Hermes Moreira de Souza; Judas Tadeu de Medeiros Costa; Luiz Sérgio Coelho de Cerqueira; Evandro Ferreira: Palmeiras brasileiras e exóticas cultivadas. Instituto Plantarum, Nova Odessa, 2004 ISBN 85-86714-20-8
Lucas-Filho, M. D., Silva, G. C., Cortes, S. F., Mares-Guia, T. R., Perpétua Ferraz, V., Serra, C. P., & Braga, F. C. (2010). ACE inhibition by astilbin isolated from Erythroxylum gonocladum (Mart.) O.E. Schulz. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 17(5), 383–387. https://doi.org/10.1016/J.PHYMED.2009.09.008
Luiz Da Costa Moreira, A., Pereira Queiroz, E., & Magalhães Pigozzo, C. (2009). SÍNDROMES DE DISPERSÃO DE FRUTOS E SEMENTES DO FRAGMENTO URBANO (19o BC) DE MATA ATLÂNTICA, CABULA, SALVADOR, BAHIA. Candombá - Revista Virtual, 5(1), 13–25.
Martins, R. (2005). Florística, estrutura fitossociológica e interações interespecíficas de um remanescente de floresta ombrófila densa como subsídio para a recuperação de áreas degradadas pela mineração de carvão, Siderópolis,SC. https://repositorio.ufsc.br/handle/123456789/103027
Naniwadekar, R., Gopal, A., Page, N., Ghuman, S., Ramachandran, V., & Joshi, J. (2021). Large frugivores matter more on an island: Insights from island-mainland comparison of plant–frugivore communities. Ecology and Evolution, 11(3), 1399–1412. https://doi.org/10.1002/ECE3.7151
Noguchi, D. K., Nunes, G. P., & Sartori, Â. L. B. (2009). Florística e síndromes de dispersão de espécies arbóreas em remanescentes de Chaco de Porto Murtinho, Mato Grosso do Sul, Brasil. Rodriguésia, 60(2), 353–365. https://doi.org/10.1590/2175-7860200960208
Oliveira, E. V. da S., & Landim, M. F. (2020). Dunes in the North coast of Sergipe, Brazil: plant species and their ecological traits. Rodriguésia, 71. https://doi.org/10.1590/2175-7860202071021
Oliveira, L. S. B., Marangon, L. C., Feliciano, A. L. P., Lima, A. S. de, Cardoso, M. de O., & Silva, V. F. da. (2011). Florística, classificação sucessional e síndromes de dispersão em um remanescente de Floresta Atlântica, Moreno-PE. Revista Brasileira de Ciências Agrárias, 6(3), 502–507. https://doi.org/10.5039/agraria.v6i3a1384
Onstein, R. E., Kissling, W. D., Chatrou, L. W., Couvreur, T. L. P., Morlon, H., & Sauquet, H. (2019). Which frugivory-related traits facilitated historical long-distance dispersal in the custard apple family (Annonaceae)? Journal of Biogeography, 46(8), 1874–1888. https://doi.org/10.1111/JBI.13552
Osuri, A. M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Astaiza, J. H., Bradford, M., Fletcher, C., Ndoundou-Hockemba, M., Jansen, P. A., Kenfack, D., Marshall, A. R., Ramesh, B. R., Rovero, F., & Sankaran, M. (2016). Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7. https://doi.org/10.1038/NCOMMS11351
Oyama, S. de O., de Souza, L. A., Muneratto, J. C., & Albiero, A. L. M. (2010). Morphological and anatomical features of the flowers and fruits during the development of Chamissoa altissima (Jacq.) Kunth (Amaranthaceae). Brazilian Archives of Biology and Technology, 53(6), 1425–1432. https://doi.org/10.1590/S1516-89132010000600019
Pereira, L. D., Silva, D. F. P., Reis, E. F., Pinto, J. F. N., Assunção, H. F., Machado, C. G., Gomes, F. R., Carneiro, L. C., Cruz, S. C. S., & Costa, C. H. M. (2019). Characterization of Bushy Cashew (Anacardium humile A. St.-Hil.) in the State of Goiás, Brazil. Journal of Agricultural Science, 11(5), 194. https://doi.org/10.5539/JAS.V11N5P183
Pessoa, M. S., Hambuckers, A., Benchimol, M., Rocha-Santos, L., Bomfim, J. A., Faria, D., & Cazetta, E. (2017). Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspectives in Plant Ecology, Evolution and Systematics, 28, 78–86. https://doi.org/10.1016/J.PPEES.2017.09.001
Pires, C. dos S., Nascimento, A. D., & Jr., E. B. de A. (2021). DISPERSÃO DE FRUTOS E SEMENTES DO COMPONENTE LENHOSO NAS DUNAS DA PRAIA DE SÃO MARCOS, SÃO LUÍS, MARANHÃO, NORDESTE DO BRASIL. Biota Amazônia (Biote Amazonie, Biota Amazonia, Amazonian Biota), 11(1), 68–74. https://doi.org/10.18561/2179-5746/BIOTAAMAZONIA.V11N1P68-74
Pivello, V. R., Petenon, D., de Jesus, F. M., Meirelles, S. T., Vidal, M. M., Alonso, R. D. A. S., Franco, G. A. D. C., & Metzger, J. P. (2006). Chuva de sementes em fragmentos de Floresta Atlântica (São Paulo, SP, Brasil), sob diferentes situações de conectividade, estrutura florestal e proximidade da borda. Acta Botanica Brasilica, 20(4), 845–859. https://doi.org/10.1590/S0102-33062006000400010
Pizo, M. A., Silva, W. R., Galetti, M., & Laps, R. (2002). Frugivory in cotingas of the Atlantic Forest of southeast Brazil. Ararajuba, 177–185. https://repositorio.unesp.br/handle/11449/67107
Possette, R. F. da S., Mikich, S. B., Hatschbach, G. G., Ribas, O. dos S., & Liebsch, D. (2015). Floristic composition and dispersal syndromes in Araucaria Forest remnants in the municipality of Colombo, Paraná state, Brazil. Check List 11(5): 1-14, 11(5), 1–14. https://doi.org/10.15560/11.5.1771
Ramos-Robles, M., Dáttilo, W., Díaz-Castelazo, C., & Andresen, E. (2018). Fruit traits and temporal abundance shape plant-frugivore interaction networks in a seasonal tropical forest. The Science of Nature, 105(3–4). https://doi.org/10.1007/S00114-018-1556-Y
Reginato, M., Vasconcelos, T. N. C., Kriebel, R., & Simões, A. O. (2020). Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Molecular Phylogenetics and Evolution, 148, 106815. https://doi.org/10.1016/J.YMPEV.2020.106815
Rego, S. S., Nogueira, A. C., Medeiros, A. C. de S., Petkowicz, C. L. de O., & Santos, Á. F. dos. (2013). Physiological behaviour of Blepharocalyx salicifolius and Casearia decandra seeds on the tolerance to dehydration. Journal of Seed Science, 35(3), 323–330. https://doi.org/10.1590/s2317-15372013000300008
Ribeiro, S. P., Londe, V., Bueno, A. P., Barbosa, J. S., Corrêa, T. L., Soeltl, T., Maia, M., Pinto, V. D., de França Dueli, G., de Sousa, H. C., Kozovits, A. R., & Nalini, H. A. (2017). Plant defense against leaf herbivory based on metal accumulation: examples from a tropical high altitude ecosystem. Plant Species Biology, 32(2), 147–155. https://doi.org/10.1111/1442-1984.12136
Rocha, M. J. R. da, Cupertino-Eisenlohr, M. A., Leoni, L. S., Silva, A. G. da, & Nappo, M. E. (2017). Floristic and ecological attributes of a Seasonal Semideciduous Atlantic Forest in a key area for conservation of the Zona da Mata region of Minas Gerais State, Brazil1. Hoehnea, 44(1), 29–43. https://doi.org/10.1590/2236-8906-38/2016
Sánchez, M. S., Giannini, N. P., & Barquez, R. M. (2012). Bat frugivory in two subtropical rain forests of Northern Argentina: Testing hypotheses of fruit selection in the Neotropics. Mammalian Biology, 77(1), 22–31. https://doi.org/10.1016/J.MAMBIO.2011.06.002
Sansevero, J. B. B., Prieto, P. V., de Moraes, L. F. D., & Rodrigues, P. J. F. P. (2011). Natural Regeneration in Plantations of Native Trees in Lowland Brazilian Atlantic Forest: Community Structure, Diversity, and Dispersal Syndromes. Restoration Ecology, 19(3), 379–389. https://doi.org/10.1111/J.1526-100X.2009.00556.X
Santos, E. N., Caxambu, M. G., da Silva, A. R., Hoppen, M. I., & Villagra, B. L. P. (2014). Trepadeiras da Floresta Estacional Semidecídua no Estado do Paraná, Brasil (pp. 107–119).
Saravy, F. P., Jorgina De Freitas, P., Lage, M. A., Leite, S. J., Braga, L. F., Marcílio, E., & Sousa, P. (2003). SÍNDROME DE DISPERSÃO EM ESTRATOS ARBÓREOS EM UM FRAGMENTO DE FLORESTA OMBRÓFILA ABERTA E DENSA EM ALTA FLORESTA-MT 1. Revista Do Programa de Ciências Agro-Ambientais, Alta Floresta, 2(1), 1–12.
Sebastián-González, E. (2017). Drivers of species’ role in avian seed-dispersal mutualistic networks. Journal of Animal Ecology, 86(4), 878–887. https://doi.org/10.1111/1365-2656.12686
Silva, R. K. S. da, Feliciano, A. L. P., Marangon, L. C., Lima, R. B. de A., & Santos, W. B. dos. (2012). Estrutura e síndromes de dispersão de espécies arbóreas em um trecho de mata ciliar, Sirinhaém, Pernambuco, Brasil. Pesquisa Florestal Brasileira, 32(69), 1–12. https://doi.org/10.4336/2012.PFB.32.69.01
Spina, A. P., Ferreira, W. M., & Filho, H. D. F. L. (2001). Floração, frutificação e síndromes de dispersão de uma comunidade de floresta de brejo na região de Campinas (SP). Acta Botanica Brasilica, 15(3), 349–368. https://doi.org/10.1590/S0102-33062001000300006
Staggemeier, V. G., Cazetta, E., & Morellato, L. P. C. (2017). Hyperdominance in fruit production in the Brazilian Atlantic rain forest: the functional role of plants in sustaining frugivores. Biotropica, 49(1), 71–82. https://doi.org/10.1111/BTP.12358
Stefanello, D., Fernandes-Bulhão, C., & Martins, S. V. (2009). Síndromes de dispersão de sementes em três trechos de vegetação ciliar (nascente, meio e foz) ao longo do rio Pindaíba, MT. Revista Árvore, 33(6), 1051–1061. https://doi.org/10.1590/S0100-67622009000600008
Stefanello, D., Ivanauskas, N. M., Martins, S. V., Silva, E., & Kunz, S. H. (2010). Síndromes de dispersão de diásporos das espécies de trechos de vegetação ciliar do rio das Pacas, Querência - MT. Acta Amazonica, 40(1), 141–150. https://doi.org/10.1590/S0044-59672010000100018
Terra-Araujo, M. H., Faria, A. D. D., & Swenson, U. (2016). A Taxonomic Update of Neotropical Pradosia (Sapotaceae, Chrysophylloideae). Systematic Botany, 41(3), 634–650. https://doi.org/10.1600/036364416X692389
Vale, V. S. do, Schiavini, I., Oliveira, A. P. de, Custódio, O., Neto, D., & Gusson, A. E. (2013). Functional groups in a semideciduous seasonal forest in Southeastern Brazil. Biotemas, 26(2), 45–58. https://doi.org/10.5007/2175-7925.2013V26N2P45
Venzke, T. S., Martins, S. V., Neri, A. V., & Kunz, S. H. (2014). Síndromes de dispersão de sementes em estágios sucessionais de mata ciliar, no extremo sul da Mata Atlântica, Arroio do Padre, RS, Brasil. Revista Árvore, 38(3), 403–413. https://doi.org/10.1590/S0100-67622014000300002
Vidal, M. M., Hasui, E., Pizo, M. A., Tamashiro, J. Y., Silva, W. R., & Guimarães, P. R. (2014). Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology, 95(12), 3440–3447. https://doi.org/10.1890/13-1584.1
Yamamoto, L. F., Kinoshita, L. S., & Martins, F. R. (2007). Síndromes de polinização e de dispersão em fragmentos da Floresta Estacional Semidecídua Montana, SP, Brasil. Acta Botanica Brasilica, 21(3), 553–573. https://doi.org/10.1590/S0102-33062007000300005
Yuka Zama, M., Bovolenta, Y. R., de Souza Carvalho, E., Rodrigues, D. R., Gomes De Araujo, C., Aparecida Da, M., Sorace, F., & Gimenes Luz, D. (2012). Florística e síndromes de dispersão de espécies arbustivo-arbóreas no Parque Estadual Mata São Francisco, PR, Brasil. Hoehnea, 39(3), 369–378. https://doi.org/10.1590/S2236-89062012000300002
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., Fitzjohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., … Beaulieu, J. M. (2013). Three keys to the radiation of angiosperms into freezing environments. Nature 2013 506:7486, 506(7486), 89–92. https://doi.org/10.1038/nature12872
Websites, Online Floras and Online Database:
Fern, K., Fern, A., Morris, R., 2021. Useful Tropical Plants Database. Accessed on September 2021, URL: http://tropical.theferns.info
Flora Malesiana 2022, accessed in on 04 February 4, 2022 URL: https://portal.cybertaxonomy.org/flora-malesiana/
Species list and traits
We followed the Brazil Flora Group (2021) to obtain a list of accepted plant species in the Atlantic Forest. We limited our selection to angiosperms native to the Atlantic Forest, resulting in a list of 14,771 species. For those species, we assembled data on nine functional traits: fruit length, fruit width, seed length, seed width, fruit type, fruit colour, growth form, plant height and dispersal syndrome (Fig. 1), as well as information on their vegetation type. We obtained trait information through a literature survey (see Appendix 1 for references) and took measurements from specimens in two Brazilian herbaria: The Botanical Garden of Rio de Janeiro Herbarium (RB) and The Museum of Biology Mello Leitão Herbarium (MBML). We conducted our literature search using Web of Science, with the following keyword search criteria: ‘dispersal syndrome OR dispersal traits OR seed dispersal OR floristic composition OR phenology AND Atlantic Forest OR Brazil’. We restricted our search to scientific articles published in English or Portuguese. When more than one trait value per species was reported, we calculated mean values for each species.
We classified dispersal syndrome as “animal-mediated” or “abiotic”. We categorized species as having “animal-mediated” dispersal when fruits and/or seeds were described as dispersed by animals through endozoochory (seeds are ingested and pass through the digestive tract), epizoochory (fruits or seeds have structures to attach to animal fur) or zoochory (not specified how animals transport the seeds). Species for which dispersal syndrome was not explicitly described were categorized as ‘animal-mediated’ if they had fleshy fruits (i.e., fruit type ‘drupe’ or ‘berry’) and fruit colours typical for animal dispersal syndromes, i.e., orange, red or purple (Janson, 1983; Sinnott-Armstrong et al., 2018; Valenta & Nevo, 2020). We categorized species as having “abiotic” dispersal when fruits and seeds were described as dispersed by wind (anemochory), water (hydrochory) or self-dispersal (autochory) (Fig. 1).
We also collated information on species growth form and vegetation type from the Brazil Flora Group 2020. We classified growth form as: tree, climber or other (shrub/herb/succulent, i.e., understory growth forms). Species with multiple categories including “liana” were considered climbers. In addition, we used vegetation type to classify species into three categories: forest (i.e., closed ecosystems), field (i.e., open vegetation) or mixed (when a species occurs in both open and closed systems), following Leão, Lughadha, and Reich (2020).
Phylogenetic tree
To correct for phylogenetic non-independence of species and their traits in our models (Rezende, Lavabre, Guimarães, Jordano, & Bascompte, 2007), and to perform phylogenetically-informed trait imputations, we obtained a phylogenetic tree for the Atlantic Forest species with trait data (1,505 species available in the phylogeny), based on a backbone mega-tree, the phylogeny from Smith and Brown (2018), and using the function “phylo.maker” with “scenario 1” from the “V.Phylomaker” R package (Jin & Qian, 2019) (i.e., with new tips bound to the genus- of family-level basal nodes). This phylogeny was assembled using a hierarchical clustering analysis of DNA sequences collected from GenBank, and was resolved using data from the Open Tree of Life Project, and a backbone provided by Magallón, Gómez-Acevedo, Sánchez-Reyes, and Hernández-Hernández (2015).
Trait imputation
Because data on fruit- and seed-sizes (length and width) were only available for ca. 70% of Atlantic Forest species for which we also had dispersal syndrome information, we used phylogenetic trait imputation based on a maximum likelihood method in the “phylopars” R package (Bruggeman, Heringa, & Brandt, 2009) to infer fruit and seed size data for the remaining species. This approach takes a species-by-trait matrix and assumes a Brownian motion trait evolutionary process, where trait values change stochastically along the branches of the phylogenetic tree (i.e., simulating a “random walk”), to impute a maximum likelihood trait value for each species (i.e., each tip in the phylogeny). To ensure the accuracy of the method, the trait matrix used for imputation included all numerical traits with more than 60% trait coverage for all 1,505 species in the phylogeny.
Geographical range size and threat category
To estimate geographical range sizes, we gathered species occurrence records from the Global Biodiversity Information Facility (GBIF), resulting in 1,452,901 occurrences for 1,448 species (occurrences for 73 species were missing). We selected occurrences within South America, dating from 1995 to February 2023, as occurrences before 1995 may be less accurate (Colli-Silva et al., 2020). We removed uncertain coordinates using the flagging steps in the “CoordinateCleaner” R package (Zizka et al., 2019). Specifically, we removed occurrences in the ocean or institutions (museums or universities), in capitals, country or province centroids, and occurrences with equal longitude/latitude or with zeros. The final filtered dataset included 565,667 occurrences.
To determine the geographical range size of each species, we used their occurrence records to calculate the extent of occurrence (EOO) and area of occupancy (AOO). This was achieved by using the “IUCN.eval” function from the “ConR” R package (Dauby et al., 2017). EOO is the area contained within the shortest continuous boundary that can be drawn within the sites where a species occurs, and AOO is the sum of the area of all the grid cells that contain at least one occurrence point, we used a grid cell size of 4 km2 around the coordinate point. To assess whether determinants of range size differed across continental or regional scales, we measured range size based on occurrence records (1) across South America and (2) within the Atlantic Forest boundaries. Range size was estimated for species with more than 3 coordinate records; therefore, range size estimates were inferred for 1,432 species at the South America extent and 1,384 species at the Atlantic Forest extent.