Skip to main content
Dryad

Parental breeding age effects on descendants’ longevity interact over two generations in matrilines and patrilines

Data files

Nov 14, 2019 version files 446.13 KB

Abstract

Individuals within populations vary enormously in mortality risk and longevity, but the causes of this variation remain poorly understood. A potentially important and
phylogenetically widespread source of such variation is maternal age at breeding, which typically has negative effects on offspring longevity. Here, we show that paternal
age can affect offspring longevity as strongly as maternal age does, and that breeding age effects can interact over two generations in both matrilines and patrilines. We
manipulated maternal and paternal ages at breeding over two generations in the neriid fly Telostylinus angusticollis. To determine whether breeding age effects can be
modulated by the environment, we also manipulated larval diet and male competitive environment in the first generation. We found separate and interactive effects of
parental and grandparental ages at breeding on descendants’ mortality rate and lifespan in both matrilines and patrilines. These breeding age effects were not
modulated by grandparental larval diet quality or competitive environment. Our findings suggest that variation in maternal and paternal ages at breeding could contribute
substantially to intra-population variation in mortality and longevity.