Skip to main content
Dryad

Data from: Neurotransmitter content heterogeneity within an interneuron class shapes inhibitory transmission at a central synapse

Data files

Jun 20, 2022 version files 6.24 GB

Abstract

Neurotransmitter content is deemed the most basic defining criterion for neuronal classes, contrasting with the intercellular heterogeneity of many other molecular and functional features. Here we show, in the adult mouse brain, that neurotransmitter content variegation within a neuronal class is a component of its functional heterogeneity. Most Golgi cells (GoCs), the well-defined class of cerebellar interneurons inhibiting granule cells (GrCs), contain cytosolic glycine, accumulated by the neuronal transporter GlyT2, and GABA in various proportions. To assess the functional consequence of this neurotransmitter variation, we paired GrCs recordings with optogenetic stimulations of single GoCs, which preserve the intracellular transmitter mixture. We show that the strength and decay kinetics of GrCs IPSCs, which are entirely mediated by GABAA receptors are negatively correlated to the presynaptic expression of GlyT2 by GoCs. We isolate a slow spillover component of GrCs inhibition that is also affected by the expression of GlyT2, leading to a 56 % decrease in relative charge. Acute manipulations of cytosolic GABA and glycine supply recapitulate the modulation of IPSC charge, supporting the hypothesis that presynaptic loading of glycine negatively impact the GABAergic transmission in mixed interneurons through a competition for vesicular filling. Our results suggest that heterogeneity of neurotransmitter supply within the GoC class may provide a presynaptic mechanism to tune the gain of the stereotypic granular layer microcircuit, thereby expanding the realm of possible dynamic behavior.