Skip to main content
Dryad logo

Data from: Pseudomonas putida and Pseudomonas fluorescens species group recovery from human homes varies seasonally and by environment

Citation

Remold, Susanna K.; Purdy-Gibson, Megan E.; France, Michael T.; Hundley, Thomas C. (2016), Data from: Pseudomonas putida and Pseudomonas fluorescens species group recovery from human homes varies seasonally and by environment, Dryad, Dataset, https://doi.org/10.5061/dryad.2s361

Abstract

By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms’ distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively). Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.

Usage Notes

Location

Louisville Kentucky
USA metropolitan area