Skip to main content
Dryad logo

Data from: Molecular mechanisms of 2, 3′, 4, 4′, 5-pentachlorobiphenyl-induced thyroid dysfunction in FRTL-5 cells

Citation

Yang, Hui et al. (2016), Data from: Molecular mechanisms of 2, 3′, 4, 4′, 5-pentachlorobiphenyl-induced thyroid dysfunction in FRTL-5 cells, Dryad, Dataset, https://doi.org/10.5061/dryad.3479r

Abstract

Polychlorinated biphenyls (PCBs) can severely interfere with multiple animals and human systems. To explore the molecular mechanisms underlying 2, 3′, 4, 4′, 5- pentachlorobiphenyl (PCB118)-induced thyroid dysfunction, Fischer rat thyroid cell line-5(FRTL-5) cells were treated with either different concentrations of PCB118 or dimethyl sulfoxide (DMSO). The effects of PCB118 on FRTL-5 cells viability and apoptosis were assessed by using a Cell Counting Kit-8 assay and apoptosis assays, respectively. Quantitative real-time polymerase chain reaction was used to quantify protein kinase B (Akt), Forkhead box protein O3a (FoxO3a), and sodium/iodide symporter (NIS) mRNA expression levels. Western blotting was used to detect Akt, phospho-Akt (p-Akt), FoxO3a, phospho-FoxO3a (p-FoxO3a), and NIS protein levels. Luciferase reporter gene technology was used to detect the transcriptional activities of FoxO3a and NIS promoters. The effects of the constitutively active Akt (CA-Akt) and dominant-negative Akt (DN-Akt) plasmids on p-Akt, p-FoxO3a, and NIS levels were examined in PCB118-treated FRTL-5 cells. The effects of FoxO3a siRNA on FoxO3a, p-FoxO3a, and NIS protein levels were examined in the PCB118-treated FRTL-5 cells. The effects of pcDNA3 (plsmid vectors designed for high-level stable and transient expression in mammalian host)-FoxO3a on NIS promoter activity were examined in the PCB118-treated FRTL-5 cells. Our results indicated that relatively higher PCB118 concentrations can inhibit cell viability in a concentration- and time-dependent manner. Akt, p-Akt, and p-FoxO3a protein or mRNA levels increased significantly in PCB118-treated groups and NIS protein and mRNA levels decreased considerably compared with the control groups. FoxO3a promoter activity increased significantly, whereas NIS promoter activity decreased. These effects on p-FoxO3a and NIS could be decreased by the DN-Akt plasmid, enhanced by the CA-Akt plasmid, and blocked by FoxO3a siRNA. The overexpressed FoxO3a could reduce NIS promoter activity. Our results suggested that PCB118 induces thyroid cell dysfunction through the Akt/FoxO3a/NIS signaling pathway.

Usage Notes