Skip to main content
Dryad

Data from: a physics-based digital twin for model predictive control of autonomous unmanned aerial vehicle landing

Data files

May 09, 2022 version files 460.72 MB

Abstract

This paper proposes a two-level, data-driven, digital twin concept for the autonomous landing of aircraft, under some assumptions. It features a digital twin instance for model predictive control; and an innovative, real-time, digital twin prototype for fluid-structure interaction and flight dynamics to inform it. The latter digital twin is based on the linearization about a pre-designed glideslope trajectory of a high-fidelity, viscous, nonlinear computational model for flight dynamics; and its projection onto a low-dimensional approximation subspace to achieve real-time performance, while maintaining accuracy. Its main purpose is to predict in real-time, during flight, the state of an aircraft and the aerodynamic forces and moments acting on it. Unlike static lookup tables or regression-based surrogate models based on steady-state wind tunnel data, the aforementioned real-time digital twin prototype allows the digital twin instance for model predictive control to be informed by a truly dynamic flight model, rather than a less accurate set of steady-state aerodynamic force and moment data points. The paper describes in detail the construction of the proposed two-level digital twin concept and its verification by numerical simulation. It also reports on its preliminary flight validation in autonomous mode for an off-the-shelf unmanned aerial vehicle instrumented at Stanford University.