Skip to main content
Dryad

Suspended and bedload transport in an open channel laboratory flume

Data files

Dec 12, 2022 version files 1.89 GB

Abstract

Notwithstanding the large number of studies on bedforms such as dunes and antidunes, performing quantitative predictions of bedform type and geometry remains an open problem. Here we present the results of laboratory experiments specifically designed to study how sediment supply and caliber may impact equilibrium bedform type and geometry in the upper regime. Experiments were performed in a sediment feed flume with flow rates varying between 8 l/s and 15 l/s, sand supply rates varying between 0.6 kg/min and 16 kg/min, uniform and non-uniform sediment grain sizes with geometric mean diameter varying between 0.22 mm and 0.87 mm. The experimental data and the comparison with datasets available in the literature revealed that the ratio of the volume transport of sediment to the volume transport of water Qs/Qw plays a prime control in the equilibrium bed configuration. The equilibrium bed configuration transitions from washed-out dunes (lower regime), to downstream migrating antidunes (upper regime) for Qs/Qw between 0.0003 and 0.0007. For values of Qs/Qw greater than those typical of downstream migrating antidunes, the bedform wavelength increases with Qs/Qw. At these high values of Qs/Qw equilibrium bed configurations with fine sand are characterized by upstream migrating antidunes or cyclic steps, and significant suspended load. In experiments with coarse sand, equilibrium is characterized by plane bed with bedload transport in sheet flow mode. Standing waves form at the transition between downstream migrating antidunes and bed configurations with upstream migrating bedforms.