Skip to main content
Dryad

Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China

Data files

Abstract

The fruit fly Drosophila melanogaster is a model species in evolutionary studies. However, the population processes of this species in East Asia are poorly studied, even though this area was one of the first regions colonized outside of its native distribution range. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with ten unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full RDA analysis showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, three environmental variables of bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that a high level of gene flow, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.