Skip to main content
Dryad

SNP matrices and vcf files for phylogenetic, genetic structure and historical demographic analyses of Podocarpus from Hispaniola

Data files

Nov 10, 2021 version files 10.91 MB

Abstract

Aim: Hispaniola is the second largest island in the Caribbean and a hotspot of biodiversity. The island was formed by the fusion of a northern and southern palaeo-islands during the mid-Miocene (15 Ma). The historical split of Hispaniola together with repeated marine incursions during the Pleistocene are known to have influenced lineage divergence and genetic structure in a few birds and mammals, but the effect on vascular plants is less understood. The conifer genus Podocarpus has two species, P. hispaniolensis and P. buchii, that are endemic to the mountains of Hispaniola and are IUCN endangered. The former occurs in the mountains of the north, and the latter in the south, with a region of sympatry in the Central Cordillera. Here we evaluate the historical split of the two palaeo-islands, and repeated marine incursions as dispersal barriers to the geographical distribution of genetic diversity, genetic structure, divergence patterns, and the historical demography of the two species.

Location: Hispaniola island, Caribbean.

Methods: Using Genotyping by Sequencing in 47 Podocarpus samples we identified two sets of single nucleotide polymorphisms for our analyses (74,260 and 22,657 SNPs).

Results: The results show a population genetic structure that corresponds to the geographic distribution of the species in mountainous areas. Podocarpus in Hispaniola followed a stepping-stone colonization pattern with bottlenecks at each mountain colonization event.

Main conclusions: The historical events in question did not seem to have influenced the genetic structure, diversity, or demography of Podocarpus, instead the current geographic barriers imposed by lowland xeric valleys did. The clear divergence between species together with the elevated within-population genetic diversity and significant genetic structure call for a multi-population in situ conservation of each species.