Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates
Data files
Jan 24, 2022 version files 113.59 MB
-
Acanthostega.tif
5.88 MB
-
Achoania.tif
447.09 KB
-
Adololopas.tif
395.98 KB
-
Ancestors.csv
51.04 KB
-
Angarichthys.tif
331.38 KB
-
Arquatichthys.tif
762.57 KB
-
Atopacanthus.tif
703.11 KB
-
Barwickia.tif
727.45 KB
-
Bothriolepis.tif
273.09 KB
-
Brachydeirus.tif
574.68 KB
-
Brachyosteus.tif
484.84 KB
-
Brontichthys.tif
500.63 KB
-
Bullerichthys.tif
537.46 KB
-
Bungartius.tif
319.59 KB
-
Camuropiscis.tif
429.66 KB
-
Catholrhynchus.tif
595.79 KB
-
Cavanosteus.tif
504.21 KB
-
Cheiracanthus.tif
261.60 KB
-
Cheirolepis.tif
262.63 KB
-
Chirodipterus.tif
262.37 KB
-
Cladodus.tif
494.64 KB
-
Cladoselache.tif
300.53 KB
-
Coccosteus.tif
237.13 KB
-
Compagopiscis.tif
754.47 KB
-
Copanognathus.tif
872.81 KB
-
Denisonodus.tif
289.20 KB
-
Densignathus.tif
710.92 KB
-
Diabolepis.tif
327.27 KB
-
Diplocercides.tif
801.87 KB
-
Diplognathus.tif
784.31 KB
-
Dipnorhynchus.tif
645.22 KB
-
Dipterus.tif
363.11 KB
-
Donnrosenia.tif
174.71 KB
-
Dunkleosteus.tif
1.86 MB
-
Eastmanosteus.tif
311.24 KB
-
Edenopteron.tif
1.17 MB
-
Edges.csv
1.58 KB
-
Elginerpeton.tif
834.20 KB
-
Enseosteus.tif
228.38 KB
-
Erromenosteus.tif
222.45 KB
-
Eusthenopteron.tif
2.75 MB
-
Fallacosteus.tif
474.49 KB
-
Gavinia.tif
512.02 KB
-
Gogonasus.tif
612.94 KB
-
Gogosardina.tif
773.70 KB
-
Gorgonichthys.tif
812.15 KB
-
Griphognathus.tif
3.33 MB
-
GroupData.csv
2.31 KB
-
Guiyu.tif
1.04 MB
-
Gymnotrachelus.tif
1.25 MB
-
Hadrosteus.tif
513.88 KB
-
Harrytoombsia.tif
422.57 KB
-
Heintzichthys.tif
445.97 KB
-
Holodipterus.tif
768.75 KB
-
Holodus.tif
977.78 KB
-
Holoptychius.tif
906.85 KB
-
Homostius.tif
219.03 KB
-
Howidipterus.tif
677.97 KB
-
Howittacanthus.tif
185.38 KB
-
Howqualepis.tif
902.10 KB
-
Hussakofia.tif
419.48 KB
-
Hyneria.tif
938.39 KB
-
Ichthyostega.tif
639.28 KB
-
Incisoscutum.tif
725.09 KB
-
Ishnacanthus.tif
773.36 KB
-
Jarvikina.tif
801.94 KB
-
Kendrichthys.tif
386.10 KB
-
Kenichthys.tif
248.76 KB
-
Kimbryanodus.tif
192.24 KB
-
Laccognathus.tif
794.52 KB
-
Lactocamurus.tif
313.07 KB
-
Latvius.tif
1 MB
-
Leptosteus.tif
446.90 KB
-
Malerosteus.tif
1.13 MB
-
Materpiscis.tif
67.08 KB
-
Meemannia.tif
813.77 KB
-
Megamastax.tif
527.77 KB
-
Metaxygnathus.tif
702.49 KB
-
Microsteus.tif
148.76 KB
-
Miguashaia.tif
549.44 KB
-
Mimia.tif
636.63 KB
-
Moythomasia.tif
317.60 KB
-
MS.mat
19.67 MB
-
Mylostoma.tif
535.66 KB
-
Nesides.tif
318.20 KB
-
Onychodus.tif
508.86 KB
-
Orlovichthys.tif
828.09 KB
-
Osteolepis.tif
488.07 KB
-
Oxyosteus.tif
287.72 KB
-
Pachyosteus.tif
475.76 KB
-
Paledaphus.tif
936.86 KB
-
Panderichthys.tif
919.92 KB
-
Pholidosteus.tif
431.44 KB
-
Pillararhynchus.tif
428.30 KB
-
Platycephalichthys.tif
785.83 KB
-
Plourdosteus.tif
513.02 KB
-
Polyplocodus_leptognathus.tif
3 MB
-
Porolepis.tif
683.17 KB
-
Powichthys.tif
1.08 MB
-
Promesacanthus.tif
769.65 KB
-
Protogonacanthus.tif
54.53 KB
-
Psarolepis.tif
723.73 KB
-
Ptyctodus.tif
266.55 KB
-
README_deakin_etal_2022.txt
3.81 KB
-
REMatrix.mat
1.94 MB
-
Rhinodipterus.tif
262.96 KB
-
Rhinosteus.tif
410.26 KB
-
Robinsondipterus.tif
1.22 MB
-
Rolfosteus.tif
125.84 KB
-
Sample.xlsx
18.85 KB
-
Selenosteus.tif
341.70 KB
-
Serenichthys.tif
452.72 KB
-
silDevCol.csv
286 B
-
silDevNames.csv
80 B
-
SizeData.csv
1.66 KB
-
Soederberghia.tif
694.40 KB
-
Speonesydrion.tif
733.35 KB
-
Spodichthys.tif
1.11 MB
-
SS.mat
438.80 KB
-
Stenognathus.tif
925.20 KB
-
Stenosteus.tif
496.05 KB
-
Strunius.tif
1.28 MB
-
Styloichthys.tif
898.45 KB
-
TDS.mat
251.15 KB
-
Tegeolepis.tif
1.46 MB
-
Tiktaalik.tif
144.84 KB
-
timeBins.csv
104 B
-
Titanichthys.tif
68.77 KB
-
TM.mat
740.11 KB
-
Torosteus.tif
1.41 MB
-
tree.txt
502 B
-
Tungsenia.tif
729.04 KB
-
Uranolophus.tif
825.92 KB
-
Ventastega.tif
777.60 KB
-
VMSMatrix.mat
3.22 MB
-
Watsonosteus.tif
809.78 KB
-
Xylacanthus.tif
290.93 KB
-
Ymeria.tif
814.17 KB
-
Youngolepis.tif
1.16 MB
Abstract
The Siluro-Devonian adaptive radiation of jawed vertebrates, which underpins almost all living vertebrate biodiversity, is characterised by the evolutionary innovation of the lower jaw. Multiple lines of evidence have suggested that the jaw evolved from a rostral gill arch, but when the jaw took on a feeding function remains unclear. We quantified the variety of form in the earliest jaws in the fossil record and , from which we generated a range of theoretical morphospacelogies within this morphological range, which that we then tested for their functional optimality. By drawing comparisons with the real jaw data and reconstructed ancestral forms, our results show that the earliest jaw shapes were optimised for fast closure and stress resistance, inferring a feeding rather than solely ventilation function. Jaw shapes then became less optimal for these functions during the later radiation of jawed vertebrates. Thus, the evolution of jaw morphology has continually explored new morphospace and accumulated disparity through time, laying the foundation for diverse feeding strategies and the success of jawed vertebrates.