Skip to main content
Dryad

The evolution of two distinct strategies of moth flight

Data files

Oct 25, 2021 version files 385.27 MB

Abstract

Across insects, wing shape and size have undergone dramatic divergence even in closely related sister groups. However, we do not know how morphology changes in tandem with kinematics to support body weight within available power and how the specific force production patterns are linked to differences in behavior. Hawkmoths and wild silkmoths are diverse sister families with divergent wing morphology. Using 3d kinematics and quasi-steady aerodynamic modeling, we compare the aerodynamics and the contributions of wing shape, size, and kinematics in 10 moth species. We find that wing movement also diverges between the clades and underlies two distinct strategies for flight. Hawkmoths use wing kinematics, especially high frequencies, to enhance force, and wing morphologies that reduces power. Silkmoths use wing morphology to enhance force, and slow, high amplitude wingstrokes to reduce power. Both strategies converge on similar aerodynamic power and can support similar body mass ranges. However, inter-clade within-wingstroke force profiles are quite different and linked to the hovering flight of hawkmoths and the bobbing flight of silkmoths. These two moth groups fly more like other, distantly related insects than they do each other, demonstrating the diversity of flapping flight evolution and a rich bio-inspired design space for robotic flappers.