Skip to main content
Dryad logo

Data from: The manifold structure of limb coordination in walking Drosophila

Citation

DeAngelis, Brian D.; Zavatone-Veth, Jacob A.; Clark, Damon A. (2019), Data from: The manifold structure of limb coordination in walking Drosophila, Dryad, Dataset, https://doi.org/10.5061/dryad.3p9h20r

Abstract

Terrestrial locomotion requires animals to coordinate their limb movements to efficiently traverse their environment. While previous studies in hexapods have reported that limb coordination patterns can vary substantially, the structure of this variability is not yet well understood. Here, we characterized the symmetric and asymmetric components of variation in walking kinematics in the genetic model organism Drosophila. We found that Drosophila use a single continuum of coordination patterns without evidence for preferred configurations. Spontaneous symmetric variability was associated with modulation of a single control parameter—stance duration—while asymmetric variability consisted of small, limb-specific modulations along multiple dimensions of the underlying symmetric pattern. Commands that modulated walking speed, originating from artificial neural activation or from the visual system, evoked modulations consistent with spontaneous behavior. Our findings suggest that Drosophila employ a low-dimensional control architecture, which provides a framework for understanding the neural circuits that regulate hexapod legged locomotion.

Usage Notes