Skip to main content
Dryad logo

Data from: Comparison of historical bottleneck effects and genetic consequences of reintroduction in a critically-endangered island passerine

Citation

Bristol, Rachel M. et al. (2013), Data from: Comparison of historical bottleneck effects and genetic consequences of reintroduction in a critically-endangered island passerine, Dryad, Dataset, https://doi.org/10.5061/dryad.3q5k0

Abstract

Re-introduction is an important tool for recovering endangered species; however, the magnitude of genetic consequences for re-introduced populations remains largely unknown, in particular the relative impacts of historical population bottlenecks compared to those induced by conservation management. We characterize 14 microsatellite loci developed for the Seychelles paradise flycatcher and use them to quantify temporal and spatial measures of genetic variation across a 134-year time frame encompassing a historical bottleneck that reduced the species to ~28 individuals in the 1960s, through the initial stages of recovery and across a second contemporary conservation-introduction-induced bottleneck. We then evaluate the relative impacts of the two bottlenecks, and finally apply our findings to inform broader re-introduction strategy. We find a temporal trend of significant decrease in standard measures of genetic diversity across the historical bottleneck, but only a nonsignificant downward trend in number of alleles across the contemporary bottleneck. However, accounting for the different timescales of the two bottlenecks (~40 historical generations versus <1 contemporary generation), the loss of genetic diversity per generation is greater across the contemporary bottleneck. Historically, the flycatcher population was genetically structured; however, extinction on four of five islands has resulted in a homogeneous contemporary population. We conclude that severe historical bottlenecks can leave a large footprint in terms of sheer quantity of genetic diversity lost. However, severely depleted genetic diversity does not render a species immune to further genetic erosion upon re-introduction. In some cases, the loss of genetic diversity per generation can, initially at least, be greater across re-introduction-induced bottlenecks.

Usage Notes

Location

Western Indian Ocean
Republic of Seychelles