Skip to main content
Dryad logo

Data from: Geographic determinants of gene flow in two sister species of tropical Andean frogs


Guarnizo, Carlos E.; Cannatella, David C. (2013), Data from: Geographic determinants of gene flow in two sister species of tropical Andean frogs, Dryad, Dataset,


Complex interactions between topographic heterogeneity, climatic and environmental gradients, and thermal niche conservatism are commonly assumed to indicate the degree of biotic diversification in montane regions. Our aim was to investigate factors that disrupt gene flow between populations and to determine if there is evidence of downslope asymmetric migration in highland frogs with wide elevational ranges and thermal niches. We determined the role of putative impediments to gene flow (as measured by least-cost path (LCP) distances, topographic complexity, and elevational range) in promoting genetic divergence between populations of 2 tropical Andean frog sister species (Dendropsophus luddeckei, N = 114; Dendropsophus labialis, N = 74) using causal modeling and multiple matrix regression. Although the effect of geographic features was species specific, elevational range and LCP distances had the strongest effect on gene flow, with mean effect sizes (Mantel r and regression coefficients β), between 5 and 10 times greater than topographic complexity. Even though causal modeling and multiple matrix regression produced congruent results, the latter provided more information on the contribution of each geographic variable. We found moderate support for downslope migration. We conclude that the climatic heterogeneity of the landscape, the elevational distance between populations, and the inability to colonize suboptimal habitats due to thermal niche conservatism influence the magnitude of gene flow. Asymmetric migration, however, seems to be influenced by life history traits.

Usage Notes


Eastern Andes of Colombia: Cundinamarca and Boyacá