Skip to main content
Dryad

Data from: Megafauna biogeography explains plant functional trait variation in the tropics

Data files

Apr 29, 2020 version files 685.97 KB

Abstract

Aim

Biomes can diverge substantially in plant functional traits and disturbance regimens among regions. Given that Neotropical and Afrotropical regions have contrasting histories of the megafauna (because of the Holocene megafaunal extinction in the Neotropics), we hypothesize that they should harbour plants with different traits in relationship to herbivory and fire, especially in savannas. We predicted that herbivory resistance traits should be more prominent in Afrotropical savanna plants and fire resistance in Neotropical savanna plants.

Location

Tropics.

Time period

Not applicable.

Major taxa studied

Angiosperms (woody).

Methods

We compiled data for five key plant functional traits (wood density, specific leaf area, maximum tree height, spinescence and proportion of geoxyles) for forest and savanna woody species from the two distant regions (Afrotropics and Neotropics). We related these data to climate, soil and fire variables and tested predictions for megafauna selection.

Results

Spines and high wood density were more common among Afrotropical than Neotropical savanna species and species from the two forests. Moreover, the Neotropical savanna region contained more geoxyles than the Afrotropical savanna region. Finally, Afrotropical species were taller than Neotropical species. These differences were consistent with our predictions for trait selection by the megafauna, and these patterns did not change when considering climate, soil and fire regimens in the models.

Main conclusions

Our results highlight the great potential of these traits for summarizing disturbance strategy axes in tropical woody species and suggest that global variation in plant traits is unlikely to be understood fully without consideration of historical factors, especially the direct and indirect impacts of megafauna.