Skip to main content
Dryad logo

Data from: Interactions between genetic and ecological effects on the evolution of life cycles

Citation

Rescan, Marie; Lenormand, Thomas; Roze, Denis (2015), Data from: Interactions between genetic and ecological effects on the evolution of life cycles, Dryad, Dataset, https://doi.org/10.5061/dryad.40qp5

Abstract

Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this paper, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche, and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (either due to ecological differences or to differential effects of mutations), and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.

Usage Notes