Skip to main content
Dryad logo

Data from: Effects of population structure and sex on association between serotonin receptors and Drosophila heart rate

Citation

Nikoh, Naruo; Duty, April; Gibson, Greg (2009), Data from: Effects of population structure and sex on association between serotonin receptors and Drosophila heart rate, Dryad, Dataset, https://doi.org/10.5061/dryad.475

Abstract

As a first step toward population and quantitative genetic analysis of neurotransmitter receptors in Drosophila melanogaster, we describe the parameters of nucleotide variation in three serotonin receptors and their association with pupal heart rate. Thirteen kilobases of DNA including the complete coding regions of 5-HT1A, 5-HT1B, and 5-HT2 were sequenced in 216 highly inbred lines extracted from two North American populations in California and North Carolina. Nucleotide and amino acid polymorphism is in the normal range for Drosophila genes and proteins, and linkage disequilibrium decays rapidly such that haplotype blocks are typically only a few SNPs long. However, intron 1 of 5-HT1A consists of two haplotypes that are at significantly different frequencies in the two populations. Neither this region of the gene nor any of the common amino acid polymorphisms in the three loci associate with either heart rate or heart rate variability. A cluster of SNPs in intron 2 of 5-HT1A, including a triallelic site, do show a highly significant interaction between genotype, sex, and population. While it is likely that a combination of weak, complex selection pressures and population structure has helped shape variation in the serotonin receptors of Drosophila, much larger sampling strategies than are currently adopted in evolutionary genetics will be required to disentangle these effects.

Usage Notes