Skip to main content
Dryad

Endocrine disruptors cause multigenerational and transgenerational epigenetic changes in fish exposed during early life

Cite this dataset

Brander, Susanne et al. (2020). Endocrine disruptors cause multigenerational and transgenerational epigenetic changes in fish exposed during early life [Dataset]. Dryad. https://doi.org/10.5061/dryad.4f4qrfj8h

Abstract

The inland silverside, Menidia beryllina, is a euryhaline fish and a model organism in ecotoxicology. We previously showed that exposure to picomolar (ng/L) levels of endocrine disrupting chemicals (EDCs) can cause a variety of effects in M. beryllina, from changes in gene expression to phenotypic alterations. Here we explore the potential for early life exposure to EDCs to modify the epigenome in silversides, with a focus on multi- and transgenerational effects. EDCs included contaminants of emerging concern (the pyrethroid insecticide bifenthrin and the synthetic progestin levonorgestrel), as well as a commonly detected synthetic estrogen (ethinylestradiol), and a synthetic androgen (trenbolone) at exposure levels ranging from 3 to 10 ng/L. In a multigenerational experiment, we exposed parental silversides to EDCs from fertilization until 21 days post hatch (dph). Then we assessed DNA methylation patterns for three generations (F0, F1, and F2) in whole body larval fish using reduced representation bisulfite sequencing (RRBS). We found significant ( = 0.05) differences in promoter and/or gene body methylation in treatment fish relative to controls for all EDCs and all generations indicating that both multigenerational (F1) and transgenerational (F2) effects that were caused by strict inheritance of DNA methylation alterations and the dysregulation of epigenetic control mechanisms. Using gene ontology and pathway analyses, we found enrichment in biological processes and pathways representative of growth and development, immune function, reproduction, pigmentation, epigenetic regulation, stress response and repair (including pathways important in carcinogenesis). Further, we found that a subset of potentially EDC responsive genes (EDCRGs) were differentially methylated across all treatments and generations and included hormone receptors, genes involved in steroidogenesis, prostaglandin synthesis, sexual development, DNA methylation, protein metabolism and synthesis, cell signaling, and neurodevelopment. The analysis of EDCRGs provided additional evidence that differential methylation is inherited by the offspring of EDC-treated animals, sometimes in the F2 generation that was never exposed. These findings show that low, environmentally relevant levels of EDCs can cause altered methylation in genes that are functionally relevant to impaired phenotypes documented in EDC-exposed animals and EDC exposure has the potential to affect epigenetic regulation in fish that have not been directly exposed.

Usage notes

Genome, Transcriptome, and RRBS Menidia beryllina raw data

Funding

Environmental Protection Agency, Award: STAR grant 835799