Skip to main content
Dryad

Computational exploration of treadmilling and protrusion growth observed in fire ant rafts

Data files

Jan 21, 2021 version files 19.47 GB

Select up to 11 GB of files for download

Abstract

Condensed active matter systems regularly achieve cooperative emergent functions that individual constituents could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions and how phases of exploratory protrusion growth may be induced by increased ant activity. These results provide an example in which functional morphogenesis of condensed active matter may emerge purely from locally-driven collective motion and may provide a source of inspiration for the development of autonomous active matter and swarm robotics.