Skip to main content
Dryad logo

Data from: Microbial consortia controlling biogenic gas formation in the Qaidam Basin of western China

Citation

Shuai, Yanhua et al. (2016), Data from: Microbial consortia controlling biogenic gas formation in the Qaidam Basin of western China, Dryad, Dataset, https://doi.org/10.5061/dryad.4h6v0

Abstract

Knowledge of what controls the activity of subsurface microbial communities is critical for assessing and managing biogenic methane resources. In this study, 19 formation waters and five gas samples were collected at depths of 800 to 1900 m from Quaternary biogenic gas fields of the Qaidam Basin, China. The formation waters were brines with chloride (Cl) concentrations from 1200 to 2700 mM. Bacterial 16S rRNA gene copies ranged from 3.75 × 104 to 2.23 × 106 copies mL−1 of water, and those of archaea ranged from 2.44 × 103 to 4.66 × 107 copies mL−1 of water. Both bacterial and archaea 16 s rRNA gene copies were negatively correlated with Cl concentration. The microbial community structure differed significantly depending on Cl concentrations. At high Cl waters (>1800 mM), the microbial community showed a halophilic signature made up of several abundant taxonomic groups within Firmicules, γ-Proteobacteria, and methylotrophic Methanosarcinales. At low Cl, Firmicules and hydrogenotrophic methanogens were dominant members. The proportion of inferred hydrogenotrophic methanogens decreased from 89% to 14% of total archaeal reads with increasing Cl concentration; in contrast, methylotrophic species increased from 11% to 85%. Given that the proportion of hydrogenotrophic species was positively correlated with the archaeal gene abundances, we suggest that Cl concentrations primarily constrain the activity of archaea catalyzing H2 reduction of CO2. Our results show that dilution of formation waters is critical in the process of biogenic gas formation, suggesting that an engineered decrease in Cl concentrations may induce methanogenesis as a potential method to increase gas reserves in such areas in the future.

Usage Notes

Location

Qaidam Basin