Skip to main content

Species and foliar biochemical trait maps for Blackhawk Island, Wisconsin May-October 2018

Cite this dataset

Chlus, Adam; Townsend, Philip (2022). Species and foliar biochemical trait maps for Blackhawk Island, Wisconsin May-October 2018 [Dataset]. Dryad.


Foliar biochemical traits are important indicators of ecosystem functioning and health that are impractical to characterize at large spatial and temporal scales using traditional measurements. However, comprehensive inventories of foliar traits are important for understanding ecosystem responses to anthropogenic and natural disturbances, as inputs into ecosystem process models, and for quantifying spatial variation in functional diversity. Imaging spectroscopy has been demonstrated as a valuable tool for developing maps of ecologically important foliar traits at large scales, but its application to mapping foliar traits over the course of the growing season has been limited. We collected high-resolution imaging spectroscopy data over Blackhawk Island, Wisconsin, USA at eight time points during the 2018 growing season (May – October). Using partial least squares regression (PLSR) we developed predictive models applicable to all dates to produce canopy-level maps of eight traits related to ecophysiological function: chlorophyll content, leaf mass per area and concentrations of calcium, nitrogen, phosphorus, potassium, phenolics and lignin. The accuracy of our models varied across traits (R2: 0.25-0.86); traits with well-defined absorption features were retrieved with high accuracy including chlorophyll (R2: 0.86; %RMSE: 11.0) and total phenolics (R2: 0.86; %RMSE: 11.0). We also assessed how well our models estimated biochemistry on novel species and new dates using a cross-validation analysis. Chlorophyll and total phenolics were well estimated across withheld dates and species, whereas calcium was estimated poorly on both withheld species (R2: 0.08) and dates (R2: 0.07). Our canopy-level maps of macronutrients (N, P and K) showed general trends of decreasing concentration over the course of the year, reflecting dilution by carbon-rich compounds during the growing season and resorption during senescence.


USDA McIntire-Stennis, Award: WIS01809

USDA McIntire-Stennis, Award: WIS03008

NSF Macrosystems and Early NEON Science, Award: 1638720