Skip to main content
Dryad

Data from: Origin and role of the cerebrospinal fluid bidirectional flow in the central canal

Abstract

The circulation of cerebrospinal fluid (CSF) plays pivotal roles for body axis formation and brain development. During embryogenesis, CSF is rich in particles and proteins and flows bidirectionally in the central canal. The origins of bidirectional flow and its impact on development are unknown. Experiments combined with modeling and simulations demonstrate that the bidirectionality of CSF flow is generated locally by caudally-polarized motile cilia confined to the ventral wall of the central canal. Such active bidirectional flow of the CSF accelerates the long-range transport of particles propagating rostrally and caudally. In addition, spontaneous muscle contractions increase local CSF flow and consequently enhance long-range transport of extracellular lipidic particles. Focal ablation of the channel connecting brain ventricles to the central canal reduces embryo length, indicating that long-range transport contributes to embryonic growth. Our study also demonstrates that at this early stage, motile cilia ensure the proper formation of the central canal.