Skip to main content
Dryad

Causal identification of single-cell experimental perturbation effects with CINEMA-OT

Data files

Jul 24, 2023 version files 4.12 GB
Sep 22, 2023 version files 5.28 GB

Abstract

Recent advancements in single-cell technologies allow characterization of experimental perturbations at single-cell resolution. While methods have been developed to analyze such experiments, the application of a strict causal framework has not yet been explored for the inference of treatment effects at the single-cell level. In this work, we present a causal inference-based approach to single-cell perturbation analysis, termed CINEMA-OT (Causal INdependent Effect Module Attribution + Optimal Transport). CINEMA-OT separates confounding sources of variation from perturbation effects to obtain an optimal transport matching that reflects counterfactual cell pairs. These cell pairs represent causal perturbation responses permitting a number of novel analyses, such as individual treatment effect analysis, response clustering, attribution analysis, and synergy analysis. We benchmark CINEMA-OT on an array of treatment effect estimation tasks for several simulated and real datasets and show that it outperforms other single-cell perturbation analysis methods. Finally, we perform CINEMA-OT analysis of two newly-generated datasets: (1) rhinovirus and cigarette smoke-exposed airway organoids, and (2) combinatorial cytokine stimulation of immune cells. In these experiments, CINEMA-OT reveals potential mechanisms by which cigarette smoke exposure dulls the airway antiviral response, as well as the logic that governs chemokine secretion and peripheral immune cell recruitment.