Skip to main content

Data from: Divergent landscape effects on population connectivity in two co-occurring amphibian species

Cite this dataset

Richardson, Jonathan (2012). Data from: Divergent landscape effects on population connectivity in two co-occurring amphibian species [Dataset]. Dryad.


The physical and environmental attributes of landscapes often shape patterns of population connectivity by influencing dispersal and gene flow. Landscape effects on movement are typically evaluated for single species. However, inferences from multiple species are required for multi-species management strategies increasingly being applied in conservation. In this study, I compared the spatial genetic patterns of two amphibian species across the northeastern U.S. and estimated the influence of specific landscape features on observed genetic patterns. The spotted salamander (Ambystoma maculatum) and wood frog (Rana sylvatica) share many ecological attributes related to habitat use, phenology and site fidelity. However, I hypothesized that important differences in their movement patterns and life history would create distinct genetic patterns for each species. Using 14 microsatellite loci, I tested for differences in the level of genetic differentiation between the two species across 22 breeding ponds. The effects of eight landscape features were also estimated by evaluating 32 landscape resistance models. Spotted salamanders exhibited significantly higher genetic differentiation than wood frogs. Different landscape features were also identified as potential drivers of the genetic patterns in each species, with little overlap in model support between species. Collectively, these results provide strong evidence that these two amphibian species interact with the landscape in measurably different ways. The distinct genetic patterns observed are consistent with key differences in movement ability and life history between A. maculatum and R. sylvatica. These results highlight the importance of considering more than one species when assessing the impacts of the landscape matrix on population connectivity, even for ecologically similar species within the same habitats.

Usage notes


Northeastern United States