Skip to main content
Dryad

Ground truth data used to train the synapse classifier used in Lillvis et al., 2022 for ExLLSM circuit reconstruction

Data files

Jul 21, 2022 version files 6.06 GB

Abstract

Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of network components can be quantified with high throughput; the ability to assess many animals per study has been key to relating physiological properties to behavior. Conversely, detailed anatomical properties (e.g., the synaptic connectivity of molecularly-defined cell types across an entire circuit) are presently quantifiable only with low throughput; thus we know very little about how network structure, and structural variation, influences behavior. For neuroanatomical reconstruction there is a methodological gulf between electron-microscopic (EM) methods, which yield dense connectomes (but at great expense and low throughput) and light-microscopic methods, which provide molecular and cell-type specificity with high throughput (but without synaptic resolution). We developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.

Here, we share the data used to train the synapse classifier that was utilized in the analysis pipeline. All additional software, code, and usage examples to train and run the classifier can be found at Github: https://github.com/JaneliaSciComp/exllsm-circuit-reconstruction