Skip to main content
Dryad logo

Source matrices used to obtain the trophic and spatial seed dispersal networks

Citation

Rumeu, Beatriz; Donoso, Isabel; Rodríguez-Pérez, Javier; García, Daniel (2020), Source matrices used to obtain the trophic and spatial seed dispersal networks, Dryad, Dataset, https://doi.org/10.5061/dryad.5mkkwh739

Abstract

1. Trophic relationships have inherent spatial dimensions associated with the sites where species interactions, or their delayed effects, occur. Trophic networks among interacting species may thus be coupled with spatial networks linking species and habitats whereby animals connect patches across the landscape thanks to their high mobility. This trophic and spatial duality is especially inherent in processes like seed dispersal by animals, where frugivores consume fruit species and deposit seeds across habitats.

2. We analysed the frugivore-plant interactions and seed deposition patterns of a diverse assemblage of frugivores in a heterogeneous landscape in order to determine whether the roles of frugivores in network topology are correlated across trophic and spatial networks of seed dispersal.

3. We recorded fruit consumption and seed deposition by birds and mammals during two years in the Cantabrian Range (N Spain). We then constructed two networks of trophic (i.e. frugivore-plant) and spatial (i.e. frugivore-seed deposition habitat) interactions and estimated the contributions of each frugivore species to the network structure in terms of nestedness, modularity and complementary specialization. We tested whether the structural role of frugivore species was correlated across the trophic and spatial networks, and evaluated the influence of each frugivore abundance and body mass in that relationship.

4. Both the trophic and the spatial networks were modular and specialized. Trophic modules matched medium-sized birds with fleshy-fruited trees, and small bird and mammals with small-fruit trees and shrubs. Spatial modules associated birds with woody canopies, and mammals with open habitats. Frugivore species maintained their structural role across the trophic and spatial networks of seed dispersal, even after accounting for frugivore abundance and body mass.

5. The modularity found in our system points to complementarity between birds and mammals in the seed dispersal process, a fact that may trigger landscape-scale secondary succession. Our results open up the possibility of predicting the consumption pattern of a diverse frugivore community, and its ecological consequences, from the uneven distribution of fleshy-fruit resources in the landscape.