Skip to main content
Dryad

High-resolution mapping of the period landscape reveals polymorphism in cell cycle frequency tuning

Data files

Aug 09, 2021 version files 193.38 MB

Abstract

Biological oscillators adapt to environmental changes with widely tunable frequencies, a property theoretical studies attributed to positive feedbacks. However, no experiments have tested this theory. Here, we created synthetic cells to independently tune the frequency and feedback strength of a cell-cycle oscillator, enabling continuous mapping of period landscape in response to network perturbations. We found that although inhibiting positive feedback of cyclin-dependent kinase (Cdk1) reduces the tunability, the reduction is not as significant as theoretically predicted, and the Cdk1-counteracting phosphatase, PP2A, provides additional machinery to ensure frequency regulation. Additionally, cells exhibit polymorphic responses to PP2A inhibition, showing a monomodal distribution of oscillatory cells at low or high PP2A inhibition or a bimodal distribution at both low and high inhibitions. We explained the polymorphism by a model of two interlinked bistable switches of Cdk1 and PP2A where cell-cycle oscillations exhibit two modes in the presence or absence of PP2A bistability.