Skip to main content
Dryad

Data from: Pathogen reduction of monkeypox virus in plasma and whole blood using riboflavin and UV light

Data files

Dec 30, 2022 version files 4.21 KB

Abstract

Background

Monkeypox virus has recently emerged from endemic foci in Africa and, to date, several hundred human infections have been reported from at least 16 non-African countries.  The detection of virus in skin lesions, blood, semen, and saliva of infected patients with monkeypox infections raises the potential for disease transmission via routes that have not been previously documented, including by blood and plasma transfusions.  Methods for protecting the blood supply against the threats of newly emerging disease agents exist and include Pathogen Reduction Technologies (PRT) which utilize photochemical treatment processes to inactivate pathogens in blood while preserving the integrity of plasma and cellular components.  Such methods have been employed broadly for over 15 years, but effectiveness of these methods under routine use conditions against monkeypox virus has not been reported.

Results

The levels of spiked virus present in whole blood and plasma samples exceeded 103 infectious particles per dose, corresponding to greater than 105 DNA copies per mL.  Treatment of whole blood and plasma units under standard operating procedures for the Mirasol PRT System resulted in complete inactivation of infectivity to the limits of detection.  This is equivalent to a reduction of ≥ 2.86 +/- 0.73 log10 pfu/mL of infectivity in whole blood and ≥ 3.47 +/-0.19 log10 pfu/mL of infectivity in plasma under standard operating conditions for those products. 

Conclusion

Based on this data and corresponding studies on infectivity in patients with monkeypox infections, use of Mirasol PRT would be expected to significantly reduce the risk of transfusion transmission of monkeypox.