Skip to main content
Dryad logo

Data from: De novo transcriptome analysis of the excretory tubules of Carausius morosus (Phasmatodea) and possible functions of the midgut 'appendices'

Citation

Shelomi, Matan (2018), Data from: De novo transcriptome analysis of the excretory tubules of Carausius morosus (Phasmatodea) and possible functions of the midgut 'appendices', Dryad, Dataset, https://doi.org/10.5061/dryad.5rm68

Abstract

The Malpighian tubules are the insect excretory organs, responsible for ion and water homeostasis and elimination of nitrogenous wastes. Post-genomic assays suggest they also metabolize and detoxify xenobiotic compounds and have antimicrobial properties. The Phasmatodea have an additional, unique set of excretory organs referred to predominantly as midgut appendices. Their function and how it compares to phasmid and other insect Malpighian tubules is unknown. Hypotheses include carbonic anhydrase activity, calcium and metal cation sequestration, and xenobiotic transport. This work presents the first comparative transcriptomic analysis of the Phasmatodean excretory organs, using the model insect Carausius morosus. I produced de novo transcriptomes of the midgut appendices, midgut wall, and Malpighian tubules, and looked for differentially expressed genes associated with putative organ functions. The appendices differentially and highly express lipid transport and metabolism proteins, and the biomineralization gene otopetrin. The Malpighian tubules differentially and highly express acid phosphatases and multiple transporter types, while appendices express fat-soluble vitamin and peptide transporters. Many defense proteins such as multidrug resistance proteins, ABC transporters, cytochrome P450's, and glutathione-S-transferases were differentially expressed in specific excretory organs. I hypothesize that the appendices and Malpighian tubules both have defensive / xenobiotic metabolism functions, but each likely target different substrates. Phasmid Malpighian tubules excrete as in other insects, while the appendices may predominantly regulate amino acids, fats, and fat-soluble compounds. Lipid metabolism in insects is poorly understood, and the Phasmatodea may thus serve as a model for studying this further.

Usage Notes

Funding

National Science Foundation, Award: DBI-1402883