Skip to main content
Dryad logo

Data from: Genetic adaptation of Tibetan poplar (Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau

Citation

Zheng, Chenfei et al. (2020), Data from: Genetic adaptation of Tibetan poplar (Populus szechuanica var. tibetica) to high altitudes on the Qinghai-Tibetan Plateau, Dryad, Dataset, https://doi.org/10.5061/dryad.5tk1mc7

Abstract

Plant adaptation to high altitudes has long been a substantial focus of ecological and evolutionary research. However, the genetic mechanisms underlying such adaptation remain poorly understood. Here, we address this issue by sampling, genotyping, and comparing populations of Tibetan poplar, Populus szechuanica var. tibetica, distributed from low (~2000 m) to high altitudes (~3000 m) of Sejila Mountain on the Qinghai-Tibet Plateau. Population structure analyses allow clear classification of two groups according to their altitudinal distributions. However, in contrast to the genetic variation within each population, differences between the two populations only explain a small portion of the total genetic variation (3.64%). We identified asymmetrical gene flow from high- to low-altitude populations. Integrating population genomic and landscape genomic analyses, we detected two hotspot regions, one containing four genes associated with altitudinal variation, and the other containing ten genes associated with response to solar radiation. These genes participate in abiotic stress resistance and regulation of reproductive processes. Our results provide insight into the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.

Usage Notes

This dataset includes vcf files and environment variables used for bayescan and bayenv2 analysis.

environmental data:
       clim

ALL SNP data (n = 490,363):
       tibet_poplar.vcf.zip

prunned SNP data (n = 31,793):
       prunned.vcf.zip