Skip to main content
Dryad logo

Data from: Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem

Citation

Richardson, Rodney T. et al. (2015), Data from: Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem, Dryad, Dataset, https://doi.org/10.5061/dryad.64b5p

Abstract

Premise of the study: Melissopalynology, the identification of bee-collected pollen, provides insight into the flowers exploited by foraging bees. Information provided by melissopalynology could guide floral enrichment efforts aimed at supporting pollinators, but it has rarely been used because traditional methods of pollen identification are laborious and require expert knowledge. We approach melissopalynology in a novel way, employing a molecular method to study the pollen foraging of honey bees (Apis mellifera) in a landscape dominated by field crops, and compare these results to those obtained by microscopic melissopalynology. Methods: Pollen was collected from honey bee colonies in Madison County, Ohio, USA, during a two-week period in mid-spring and identified using microscopic methods and ITS2 metabarcoding. Results: Metabarcoding identified 19 plant families and exhibited sensitivity for identifying the taxa present in large and diverse pollen samples relative to microscopy, which identified eight families. The bulk of pollen collected by honey bees was from trees (Sapindaceae, Oleaceae, and Rosaceae), although dandelion (Taraxacum officinale) and mustard (Brassicaceae) pollen were also abundant. Discussion: For quantitative analysis of pollen, using both metabarcoding and microscopic identification is superior to either individual method. For qualitative analysis, ITS2 metabarcoding is superior, providing heightened sensitivity and genus-level resolution.

Usage Notes

Location

United States
Ohio