Diversity in CRISPR-based immunity protects susceptible genotypes by restricting phage spread and evolution
Data files
May 04, 2020 version files 11.82 MB
-
001_jc_T1-R3-8_7..ab1
245.56 KB
-
001_jc_T1-R3-8_7..seq
600 B
-
001_jc_T2.R5-4_13..ab1
235.38 KB
-
001_jc_T2.R5-4_13..seq
496 B
-
002_jc_T1-R3-7_7..ab1
211.01 KB
-
002_jc_T1-R3-7_7..seq
262 B
-
002_jc_T2.R5-3_13..ab1
235.01 KB
-
002_jc_T2.R5-3_13..seq
486 B
-
003_jc_T1-R3-6_7..ab1
210.70 KB
-
003_jc_T1-R3-6_7..seq
260 B
-
003_jc_T2.R5-2_13..ab1
235.18 KB
-
003_jc_T2.R5-2_13..seq
496 B
-
004_jc_T1-R3-5_7..ab1
246.18 KB
-
004_jc_T1-R3-5_7..seq
604 B
-
004_jc_T2.R5-1_13..ab1
235.19 KB
-
004_jc_T2.R5-1_13..seq
493 B
-
005_jc_T1-R3-12_7..ab1
247.93 KB
-
005_jc_T1-R3-12_7..seq
594 B
-
005_jc_T1-R3-4_7..ab1
245.93 KB
-
005_jc_T1-R3-4_7..seq
606 B
-
006_jc_T1-R3-11_7..ab1
246 KB
-
006_jc_T1-R3-11_7..seq
604 B
-
006_jc_T1-R3-3_7..ab1
245.98 KB
-
006_jc_T1-R3-3_7..seq
605 B
-
007_jc_T1-R3-10_7..ab1
211.05 KB
-
007_jc_T1-R3-10_7..seq
260 B
-
007_jc_T1-R3-2_7..ab1
245.99 KB
-
007_jc_T1-R3-2_7..seq
603 B
-
008_jc_T1-R3-1_7..ab1
245.82 KB
-
008_jc_T1-R3-1_7..seq
603 B
-
008_jc_T1-R3-9_7..ab1
211 KB
-
008_jc_T1-R3-9_7..seq
257 B
-
009_jc_T1-R3-12_10.ab1
234.03 KB
-
009_jc_T1-R3-12_10.seq
476 B
-
009_jc_T1-R3-4_10.ab1
213.63 KB
-
009_jc_T1-R3-4_10.seq
282 B
-
010_jc_T1-R3-11_10.ab1
233.58 KB
-
010_jc_T1-R3-11_10.seq
478 B
-
010_jc_T1-R3-3_10.ab1
213.75 KB
-
010_jc_T1-R3-3_10.seq
281 B
-
011_jc_T1-R3-10_10.ab1
233.58 KB
-
011_jc_T1-R3-10_10.seq
473 B
-
011_jc_T1-R3-2_10.ab1
213.55 KB
-
011_jc_T1-R3-2_10.seq
280 B
-
012_jc_T1-R3-1_10.ab1
213.62 KB
-
012_jc_T1-R3-1_10.seq
280 B
-
012_jc_T1-R3-9_10.ab1
233.67 KB
-
012_jc_T1-R3-9_10.seq
473 B
-
013_jc_T1-R3-8_10.ab1
233.43 KB
-
013_jc_T1-R3-8_10.seq
475 B
-
013_jc_T2.R5-8_13..ab1
235.03 KB
-
013_jc_T2.R5-8_13..seq
498 B
-
014_jc_T1-R3-7_10.ab1
233.43 KB
-
014_jc_T1-R3-7_10.seq
476 B
-
014_jc_T2.R5-7_13..ab1
235.53 KB
-
014_jc_T2.R5-7_13..seq
499 B
-
015_jc_T1-R3-6_10.ab1
213.52 KB
-
015_jc_T1-R3-6_10.seq
280 B
-
015_jc_T2.R5-6_13..ab1
235.17 KB
-
015_jc_T2.R5-6_13..seq
491 B
-
016_jc_T1-R3-5_10.ab1
234.32 KB
-
016_jc_T1-R3-5_10.seq
478 B
-
016_jc_T2.R5-5_13..ab1
235.19 KB
-
016_jc_T2.R5-5_13..seq
496 B
-
017_jc_Phage-13_21.ab1
238.85 KB
-
017_jc_Phage-13_21.seq
528 B
-
017_jc_T2-R5-8_21.ab1
224.92 KB
-
017_jc_T2-R5-8_21.seq
397 B
-
018_jc_Phage-7_10.ab1
233.62 KB
-
018_jc_Phage-7_10.seq
483 B
-
018_jc_T2-R5-7_21.ab1
237.70 KB
-
018_jc_T2-R5-7_21.seq
517 B
-
019_jc_Phage-13_13.ab1
235.15 KB
-
019_jc_Phage-13_13.seq
496 B
-
019_jc_T2-R5-6_21.ab1
225.04 KB
-
019_jc_T2-R5-6_21.seq
397 B
-
020_jc_Phage-7_7.ab1
249.57 KB
-
020_jc_Phage-7_7.seq
605 B
-
020_jc_T2-R5-5_21.ab1
225.07 KB
-
020_jc_T2-R5-5_21.seq
396 B
-
021_jc_Ancestral_21.ab1
239.99 KB
-
021_jc_Ancestral_21.seq
543 B
-
021_jc_T2-R5-4_21.ab1
237.77 KB
-
021_jc_T2-R5-4_21.seq
518 B
-
022_jc_Ancestral_10.ab1
233.59 KB
-
022_jc_Ancestral_10.seq
476 B
-
022_jc_T2-R5-3_21.ab1
225.02 KB
-
022_jc_T2-R5-3_21.seq
396 B
-
023_jc_Ancestral_13.ab1
235.49 KB
-
023_jc_Ancestral_13.seq
499 B
-
023_jc_T2-R5-2_21.ab1
224.96 KB
-
023_jc_T2-R5-2_21.seq
398 B
-
024_jc_Ancestral_7.ab1
246.71 KB
-
024_jc_Ancestral_7.seq
602 B
-
024_jc_T2-R5-1_21.ab1
237.67 KB
-
024_jc_T2-R5-1_21.seq
519 B
-
041_jc_Phage-21_21.ab1
227.15 KB
-
041_jc_Phage-21_21.seq
397 B
-
042_jc_Phage-10_10.ab1
215.63 KB
-
042_jc_Phage-10_10.seq
283 B
-
dynamics_master.csv
59.38 KB
-
evo_and_titre_analysis.R
3.71 KB
-
phage_analysis.R
9.76 KB
-
phage_data.csv
21.12 KB
-
phage_evo_preds.csv
1.62 KB
-
phage_evolution_analysis.R
7.72 KB
-
phage_evolution.csv
23.65 KB
-
phage_model_coefs.csv
1.19 KB
-
README.md
698 B
-
selection_rate_analysis.R
31.27 KB
-
selection_rate_summary.csv
2.19 KB
-
selection_rates.csv
46.24 KB
Abstract
Diversity in host resistance often associates with reduced pathogen spread. This may result from ecological and evolutionary processes, likely with feedback between them. Theory and experiments on bacteria-phage interactions have shown that genetic diversity of the bacterial adaptive immune system can limit phage evolution to overcome resistance. Using the CRISPR-Cas bacterial immune system and lytic phage, we engineered a host-pathogen system where each bacterial host genotype could be infected by only one phage genotype. With this model system, we explored how CRISPR diversity impacts the spread of phage when they can overcome a resistance allele, how immune diversity affects the evolution of the phage to increase its host range, and if there was feedback between these processes. We show that increasing CRISPR diversity benefits susceptible bacteria via a dilution effect, which limits the spread of the phage. We suggest that this ecological effect impacts the evolution of novel phage genotypes, which then feeds back into phage population dynamics.
Anyone wishing to use this dataset is suggested to go to this paper's GitHub - github.com/JackCommon/Common_etal_2020