Skip to main content

Data from: Antibody selection and amino acid reversions

Cite this dataset

da Silva, Jack (2012). Data from: Antibody selection and amino acid reversions [Dataset]. Dryad.


Pathogens adapt to antibody surveillance through amino acid replacements in targeted protein regions, or epitopes, that interfere with antibody binding. However, such escape mutations may exact a fitness cost due to impaired protein function. Here, it is hypothesised that the recurring generation of specific neutralising antibodies to an epitope region as it evolves in response to antibody selection will cause amino acid reversions by releasing early escape mutations from immune selection. The plausibility of this hypothesis was tested with stochastic simulation of adaptation at the molecular sequence level in finite populations. Under the conditions of strong selection and weak mutation, the rates of allele fixation and amino acid reversion increased with population size and selection coefficients. These rates decreased with population size, however, if mutation became strong, because clonal interference reduced the rate of adaptation. The model successfully predicts the rate of reversion per allele fixation for an important human immunodeficiency virus type 1 (HIV-1) antibody epitope region. Therefore, antibody selection may generate complex adaptive dynamics.

Usage notes