Skip to main content
Dryad logo

Data from: Variation in mandible development and its relationship to dependence on parents across burying beetles


Benowitz, Kyle M. et al. (2018), Data from: Variation in mandible development and its relationship to dependence on parents across burying beetles, Dryad, Dataset,


Background: In species with parental care, there is striking variation in offspring dependence at birth, ranging from feeding independence to complete dependency on parents for nutrition. Frequently, highly dependent offspring further evolve reductions or alterations of morphological traits that would otherwise promote self-sufficiency. Here, we examine evidence for morphological evolution associated with dependence in burying beetles (Nicrophorus spp.), in which dependence upon parents appears to have several independent origins. In many species precocial first instar larvae can survive without parenting, but several altricial species die at this stage on their own. We focused specifically on the mandibles, which are expected to be related to feeding ability and therefore independence from parents. Results: We find no evidence that the size of the mandible is related to dependence on parents. However, we do find a developmental and phylogenetic correlation between independence and the presence of serrations on the inner edge of the mandible. Mandibles of independent species bear serrations at hatching, whereas dependent species hatch with smooth mandibles, only developing serrations in the second instar when these larvae gain the ability to survive on their own. Phylogenetic evidence suggests that serrations coincide with independence repeatedly. We note a single exception to this trend, a beetle with a serrated mandible that cannot survive without parents. However, this exception occurs in a species that has recently evolved the loss of independence. Conclusions: We argue that the absence of mandible serrations occurs due to alternative selection pressures incurred in larvae dependent upon parents to survive. We suggest that this may have led to a variable function for mandibles, perhaps related to increased competitive ability among siblings or increased efficiency in receiving nutrition from parents. Furthermore, we propose that the phylogenetic pattern we see is consistent with the long-held evolutionary hypothesis that evolutionary change in behavior and physiology precede morphological change.

Usage Notes


National Science Foundation, Award: IOS-1354358