Skip to main content
Dryad

Lipidomic profiling of Mycobacterium tuberculosis treated with JCP276, BMB034, or THL

Abstract

The increasing incidence of antibiotic-resistant Mycobacterium tuberculosis infections is a growing global health threat necessitating the development of new antibiotics. Serine hydrolases (SHs) are a promising class of targets because of their importance for the synthesis of the mycobacterial cell envelope. We screened a library of small molecules containing serine-reactive electrophiles and identified a series of narrow spectrum inhibitors of M. tuberculous growth. Using these lead molecules we performed competitive activity-based protein profiling and identified SH targets, including enzymes with uncharacterized functions. Lipidomic analyses of compound-treated cultures revealed an accumulation of free lipids and a substantial decrease in lipooligosaccharides, linking SH inhibition to defects in cell envelope biogenesis. Mutant analysis revealed a path to resistance via the synthesis of mycocerates, but not through mutations to target enzymes. We conclude that simultaneous inhibition of multiple SH enzymes is likely to be an effective therapeutic strategy.