Skip to main content
Dryad logo

Data from: Species coexistence through simultaneous fluctuation-dependent mechanisms


Letten, Andrew D.; Dhami, Manpreet K.; Ke, Po-Ju; Fukami, Tadashi (2019), Data from: Species coexistence through simultaneous fluctuation-dependent mechanisms, Dryad, Dataset,


Understanding the origins and maintenance of biodiversity remains one of biology's grand challenges. From theory and observational evidence we know that variability in environmental conditions through time is likely critical to the coexistence of competing species. Nevertheless, strong experimental tests of fluctuation-driven coexistence are rare, and have typically focused on just one of two potential mechanisms, the temporal storage effect, to the neglect of the theoretically equally plausible mechanism known as relatively nonlinearity of competition. We combined experiments and simulations in a system of nectar yeasts to quantify the relative contribution of the two mechanisms to coexistence. Resource competition models parameterized from single-species assays predicted the outcomes of mixed-culture competition experiments with 83% accuracy. Model simulations revealed that both mechanisms have measurable effects on coexistence, and relative nonlinearity can be equal or greater in magnitude to the temporal storage effect. In addition, we show that their effect on coexistence can be both antagonistic and complementary. These results falsify the common assumption that relative nonlinearity is of negligible importance, and in doing so reveal the importance of testing coexistence mechanisms in combination.

Usage Notes


National Science Foundation, Award: DEB 1149600 and DEB 1737758