Skip to main content
Dryad

Data from: Mean landscape-scale incidence of species in discrete habitats is patch size dependent

Data files

Feb 08, 2024 version files 21.85 MB

Abstract

Contains data and code for the manuscript 'Mean landscape-scale incidence of species in discrete habitats is patch size dependent'.

Raw data consist of 202 published datasets collated from primary and secondary (e.g., government technical reports) sources. These sources summarise metacommunity structure for different taxonomic groups (birds, invertebrates, non-avian vertebrates or plants) in different types of discrete metacommunities including 'true' islands (i.e., inland, continental or oceanic archipelagos), habitat islands (e.g., ponds, wetlands, sky islands) and fragments (e.g., forest/woodland or grass/shrubland habitat remnants). 

The aim of the study was to test whether the size of a habitat patch influences the mean incidences of species within it, relative to the incidence of all species across the landscape. In other words, whether high-incidence (widespread) or low-incidence (narrow-range) species are found more often than expected in smaller or larger patches. To achieve this, a new standardized effect size metric was developed that quantifies the mean observed incidence of all species present in every patch (the geometric mean of the number of patches in which all species were observed) and compares this with an expectation based on re-sampling the incidences of all species in all patches. Meta-regression  of the 202 datasets was used to test the relationship between this metric, the 'mean species landscape-scale incidences per patch' (MSLIP), and the size of habitat patches, and for differences in response among metacommunity types and taxonomic groups.