Skip to main content
Dryad logo

Data from: Coevolution of competing Callosobruchus species does not stabilize coexistence

Citation

Hausch, Stephen J.; Fox, Jeremy W.; Vamosi, Steven M. (2018), Data from: Coevolution of competing Callosobruchus species does not stabilize coexistence, Dryad, Dataset, https://doi.org/10.5061/dryad.70057

Abstract

Interspecific resource competition is expected to select for divergence in resource use, weakening interspecific relative to intraspecific competition, thus promoting stable coexistence. More broadly, because interspecific competition reduces fitness, any mechanism of interspecific competition should generate selection favoring traits that weaken interspecific competition. However, species also can adapt to competition by increasing their competitive ability, potentially destabilizing coexistence. We reared two species of bean beetles, the specialist Callosobruchus maculatus and the generalist C. chinensis, in allopatry and sympatry on a mixture of adzuki beans and lentils, and assayed mutual invasibility after four, eight, and twelve generations of evolution. Contrary to the expectation that coevolution of competitors will weaken interspecific competition, the rate of mutual invasibility did not differ between sympatry and allopatry. Rather, the invasion rate of C. chinensis, but not C. maculatus, increased with duration of evolution, as C. chinensis adapted to lentils without experiencing reduced adaptation to adzuki beans, and regardless of the presence or absence of C. maculatus. Our results highlight that evolutionary responses to interspecific competition promote stable coexistence only under specific conditions that can be difficult to produce in practice.

Usage Notes