Data for: Novel quantification of eggshell surfaces in Dromaius novaehollandiae with implications for the fossil eggshells of Oviraptorosauria (Dinosauria)
Data files
Jan 07, 2025 version files 168.20 MB
-
Emu_E1Z1a.stl
656.68 KB
-
Emu_E1Z1b.stl
240.23 KB
-
Emu_E1Z1c.stl
252.18 KB
-
Emu_E1Z1d.stl
359.98 KB
-
Emu_E1Z1e.stl
356.93 KB
-
Emu_E1Z1g.stl
439.53 KB
-
Emu_E1Z1h.stl
378.88 KB
-
Emu_E1Z2b.stl
334.83 KB
-
Emu_E1Z2c.stl
286.23 KB
-
Emu_E1Z2d.stl
370.88 KB
-
Emu_E1Z2e.stl
424.13 KB
-
Emu_E1Z2f.stl
468.03 KB
-
Emu_E1Z2g.stl
321.63 KB
-
Emu_E1Z2h.stl
314.23 KB
-
Emu_E1Z2i.stl
426.33 KB
-
Emu_E1Z3a.stl
256.43 KB
-
Emu_E1Z3b.stl
302.03 KB
-
Emu_E1Z3c.stl
369.23 KB
-
Emu_E1Z3d.stl
325.63 KB
-
Emu_E1Z3e.stl
278.38 KB
-
Emu_E1Z3f.stl
419.03 KB
-
Emu_E1Z3g.stl
412.53 KB
-
Emu_E1Z3h.stl
378.38 KB
-
Emu_E1Z3i.stl
387.18 KB
-
Emu_E1Z3j.stl
400.38 KB
-
Emu_E1Z3k.stl
616.48 KB
-
Emu_E1Z4a.stl
537.78 KB
-
Emu_E1Z4b.stl
512.93 KB
-
Emu_E1Z4c.stl
729.48 KB
-
Emu_E1Z4d.stl
626.73 KB
-
Emu_E1Z4e.stl
457.43 KB
-
Emu_E1Z4f.stl
308.18 KB
-
Emu_E1Z4g.stl
367.83 KB
-
Emu_E1Z4h.stl
715.23 KB
-
Emu_E1Z4i.stl
503.48 KB
-
Emu_E1Z4k.stl
575.08 KB
-
Emu_E1Z5a.stl
402.43 KB
-
Emu_E1Z5c.stl
509.78 KB
-
Emu_E1Z5d.stl
417.63 KB
-
Emu_E1Z5e.stl
344.23 KB
-
Emu_E1Z5f.stl
335.48 KB
-
Emu_E1Z5g.stl
226.78 KB
-
Emu_E1Z5h.stl
381.83 KB
-
Emu_E1Z5j.stl
331.03 KB
-
Emu_E2Z1a.stl
318.33 KB
-
Emu_E2Z1b.stl
344.63 KB
-
Emu_E2Z1c.stl
208.13 KB
-
Emu_E2Z1d.stl
209.28 KB
-
Emu_E2Z1e.stl
212.98 KB
-
Emu_E2Z1f.stl
234.38 KB
-
Emu_E2Z1g.stl
183.98 KB
-
Emu_E2Z1h.stl
229.33 KB
-
Emu_E2Z1i.stl
295.43 KB
-
Emu_E2Z2a.stl
279.33 KB
-
Emu_E2Z2b.stl
362.03 KB
-
Emu_E2Z2c.stl
427.78 KB
-
Emu_E2Z2d.stl
388.43 KB
-
Emu_E2Z2e.stl
511.98 KB
-
Emu_E2Z2g.stl
542.68 KB
-
Emu_E2Z2h.stl
397.53 KB
-
Emu_E2Z2i.stl
336.68 KB
-
Emu_E2Z2j.stl
370.88 KB
-
Emu_E2Z2k.stl
427.73 KB
-
Emu_E2Z3a.stl
467.78 KB
-
Emu_E2Z3b.stl
421.33 KB
-
Emu_E2Z3c.stl
510.43 KB
-
Emu_E2Z3d.stl
519.58 KB
-
Emu_E2Z3e.stl
427.33 KB
-
Emu_E2Z3f.stl
470.93 KB
-
Emu_E2Z3g.stl
323.38 KB
-
Emu_E2Z3h.stl
389.58 KB
-
Emu_E2Z3i.stl
355.53 KB
-
Emu_E2Z3j.stl
371.48 KB
-
Emu_E2Z3k.stl
238.68 KB
-
Emu_E2Z3l.stl
388.88 KB
-
Emu_E2Z3m.stl
377.73 KB
-
Emu_E2Z3n.stl
413.38 KB
-
Emu_E2Z4b.stl
457.43 KB
-
Emu_E2Z4c.stl
461.08 KB
-
Emu_E2Z4d.stl
535.78 KB
-
Emu_E2Z4f.stl
461.33 KB
-
Emu_E2Z4h.stl
472.23 KB
-
Emu_E2Z4j.stl
607.53 KB
-
Emu_E2Z4k.stl
475.53 KB
-
Emu_E2Z5a.stl
430.13 KB
-
Emu_E2Z5b.stl
440.03 KB
-
Emu_E2Z5c.stl
386.73 KB
-
Emu_E2Z5d.stl
442.53 KB
-
Emu_E2Z5e.stl
434.08 KB
-
Emu_E2Z5f.stl
351.98 KB
-
Emu_E2Z5h.stl
421.33 KB
-
Emu_E3Z1a.stl
367.98 KB
-
Emu_E3Z1b.stl
316.08 KB
-
Emu_E3Z1c.stl
337.98 KB
-
Emu_E3Z1d.stl
447.53 KB
-
Emu_E3Z1e.stl
423.93 KB
-
Emu_E3Z1f.stl
448.13 KB
-
Emu_E3Z1g.stl
400.63 KB
-
Emu_E3Z1h.stl
368.08 KB
-
Emu_E3Z1i.stl
542.38 KB
-
Emu_E3Z1j.stl
522.33 KB
-
Emu_E3Z2b.stl
343.58 KB
-
Emu_E3Z2c.stl
322.28 KB
-
Emu_E3Z2d.stl
424.03 KB
-
Emu_E3Z2e.stl
502.43 KB
-
Emu_E3Z2f.stl
451.13 KB
-
Emu_E3Z2g.stl
412.13 KB
-
Emu_E3Z2h.stl
437.28 KB
-
Emu_E3Z2j.stl
437.78 KB
-
Emu_E3Z2k.stl
508.98 KB
-
Emu_E3Z2l.stl
583.18 KB
-
Emu_E3Z3a.stl
408.03 KB
-
Emu_E3Z3b.stl
460.33 KB
-
Emu_E3Z3c.stl
568.03 KB
-
Emu_E3Z3d.stl
625.93 KB
-
Emu_E3Z3h.stl
439.98 KB
-
Emu_E3Z3i.stl
397.08 KB
-
Emu_E3Z4a.stl
425.23 KB
-
Emu_E3Z4b.stl
422.63 KB
-
Emu_E3Z4c.stl
597.18 KB
-
Emu_E3Z4d.stl
597.93 KB
-
Emu_E3Z4e.stl
325.23 KB
-
Emu_E3Z4f.stl
397.38 KB
-
Emu_E3Z4g.stl
660.88 KB
-
Emu_E3Z4h.stl
463.13 KB
-
Emu_E3Z4i.stl
466.13 KB
-
Emu_E3Z4j.stl
486.98 KB
-
Emu_E3Z4l.stl
545.38 KB
-
Emu_E3Z4m.stl
576.83 KB
-
Emu_E3Z4n.stl
419.08 KB
-
Emu_E3Z5a.stl
316.98 KB
-
Emu_E3Z5b.stl
437.23 KB
-
Emu_E3Z5c.stl
506.48 KB
-
Emu_E3Z5d.stl
504.43 KB
-
Emu_E3Z5e.stl
443.73 KB
-
Emu_E3Z5f.stl
394.83 KB
-
Emu_E3Z5g.stl
416.83 KB
-
Emu_E3Z5h.stl
413.13 KB
-
Emu_E3Z5i.stl
498.43 KB
-
Emu_E3Z5j.stl
406.28 KB
-
Emu_E4Z1b.stl
444.63 KB
-
Emu_E4Z1c.stl
412.53 KB
-
Emu_E4Z1d.stl
442.23 KB
-
Emu_E4Z1e.stl
454.18 KB
-
Emu_E4Z1f.stl
557.68 KB
-
Emu_E4Z1g.stl
444.03 KB
-
Emu_E4Z1h.stl
275.28 KB
-
Emu_E4Z2a.stl
344.63 KB
-
Emu_E4Z2b.stl
316.63 KB
-
Emu_E4Z2c.stl
307.28 KB
-
Emu_E4Z2d.stl
409.78 KB
-
Emu_E4Z2e.stl
343.73 KB
-
Emu_E4Z2f.stl
373.48 KB
-
Emu_E4Z2g.stl
394.08 KB
-
Emu_E4Z2h.stl
388.48 KB
-
Emu_E4Z2i.stl
351.18 KB
-
Emu_E4Z3a.stl
320.28 KB
-
Emu_E4Z3b.stl
358.98 KB
-
Emu_E4Z3c.stl
624.83 KB
-
Emu_E4Z3e.stl
538.23 KB
-
Emu_E4Z3f.stl
391.13 KB
-
Emu_E4Z3g.stl
233.93 KB
-
Emu_E4Z3h.stl
224.63 KB
-
Emu_E4Z3i.stl
439.33 KB
-
Emu_E4Z4a.stl
480.98 KB
-
Emu_E4Z4b.stl
450.48 KB
-
Emu_E4Z4c.stl
525.73 KB
-
Emu_E4Z4d.stl
636.48 KB
-
Emu_E4Z4e.stl
579.28 KB
-
Emu_E4Z4f.stl
478.38 KB
-
Emu_E4Z4h.stl
447.43 KB
-
Emu_E4Z4i.stl
635.43 KB
-
Emu_E4Z4j.stl
708.68 KB
-
Emu_E4Z4k.stl
661.28 KB
-
Emu_E4Z5a.stl
1.06 MB
-
Emu_E4Z5b.stl
711.18 KB
-
Emu_E4Z5c.stl
431.83 KB
-
Emu_E4Z5d.stl
355.23 KB
-
Emu_E4Z5e.stl
602.58 KB
-
Emu_E4Z5f.stl
552.78 KB
-
Emu_E4Z5g.stl
428.58 KB
-
Emu_E4Z5h.stl
683.33 KB
-
Emu_E4Z5i.stl
420.03 KB
-
Emu_E4Z5j.stl
445.48 KB
-
Emu_E5Z1a.stl
431.83 KB
-
Emu_E5Z1b.stl
507.03 KB
-
Emu_E5Z1c.stl
513.88 KB
-
Emu_E5Z1d.stl
477.28 KB
-
Emu_E5Z1e.stl
410.63 KB
-
Emu_E5Z1f.stl
362.88 KB
-
Emu_E5Z1g.stl
475.33 KB
-
Emu_E5Z1h.stl
459.23 KB
-
Emu_E5Z2a.stl
401.08 KB
-
Emu_E5Z2b.stl
409.03 KB
-
Emu_E5Z2c.stl
654.73 KB
-
Emu_E5Z2d.stl
482.23 KB
-
Emu_E5Z2e.stl
321.38 KB
-
Emu_E5Z2g.stl
281.68 KB
-
Emu_E5Z2h.stl
346.13 KB
-
Emu_E5Z2i.stl
479.08 KB
-
Emu_E5Z3a.stl
263.03 KB
-
Emu_E5Z3b.stl
273.78 KB
-
Emu_E5Z3d.stl
526.63 KB
-
Emu_E5Z3e.stl
414.88 KB
-
Emu_E5Z3f.stl
335.33 KB
-
Emu_E5Z3g.stl
389.88 KB
-
Emu_E5Z3h.stl
387.93 KB
-
Emu_E5Z3i.stl
388.53 KB
-
Emu_E5Z3j.stl
440.63 KB
-
Emu_E5Z4a.stl
565.13 KB
-
Emu_E5Z4b.stl
581.38 KB
-
Emu_E5Z4c.stl
639.33 KB
-
Emu_E5Z4d.stl
606.28 KB
-
Emu_E5Z4e.stl
689.08 KB
-
Emu_E5Z4f.stl
659.23 KB
-
Emu_E5Z4g.stl
615.83 KB
-
Emu_E5Z4h.stl
603.38 KB
-
Emu_E5Z4i.stl
467.88 KB
-
Emu_E5Z4j.stl
463.48 KB
-
Emu_E5Z4k.stl
575.33 KB
-
Emu_E5Z5a.stl
561.43 KB
-
Emu_E5Z5b.stl
576.23 KB
-
Emu_E5Z5c.stl
596.88 KB
-
Emu_E5Z5e.stl
692.53 KB
-
Emu_E5Z5f.stl
670.13 KB
-
Emu_E5Z5g.stl
747.28 KB
-
Emu_E5Z5h.stl
790.63 KB
-
Emu_E5Z5i.stl
630.78 KB
-
Emu_E5Z5j.stl
708.48 KB
-
Emu_E6Z1a.stl
506.18 KB
-
Emu_E6Z1b.stl
502.03 KB
-
Emu_E6Z1c.stl
559.68 KB
-
Emu_E6Z1d.stl
599.78 KB
-
Emu_E6Z1g.stl
453.28 KB
-
Emu_E6Z1h.stl
437.38 KB
-
Emu_E6Z1i.stl
603.88 KB
-
Emu_E6Z2a.stl
502.78 KB
-
Emu_E6Z2b.stl
445.43 KB
-
Emu_E6Z2c.stl
358.28 KB
-
Emu_E6Z2d.stl
344.43 KB
-
Emu_E6Z2e.stl
350.03 KB
-
Emu_E6Z2f.stl
557.43 KB
-
Emu_E6Z2g.stl
491.88 KB
-
Emu_E6Z2h.stl
377.88 KB
-
Emu_E6Z2i.stl
557.13 KB
-
Emu_E6Z2j.stl
459.48 KB
-
Emu_E6Z3a.stl
318.78 KB
-
Emu_E6Z3b.stl
320.38 KB
-
Emu_E6Z3c.stl
189.28 KB
-
Emu_E6Z3d.stl
203.23 KB
-
Emu_E6Z3e.stl
287.03 KB
-
Emu_E6Z3f.stl
672.88 KB
-
Emu_E6Z4a.stl
393.38 KB
-
Emu_E6Z4b.stl
635.48 KB
-
Emu_E6Z4c.stl
433.03 KB
-
Emu_E6Z4d.stl
365.28 KB
-
Emu_E6Z4e.stl
244.13 KB
-
Emu_E6Z4f.stl
288.63 KB
-
Emu_E6Z4g.stl
332.53 KB
-
Emu_E6Z4h.stl
267.38 KB
-
Emu_E6Z5a.stl
361.88 KB
-
Emu_E6Z5b.stl
323.13 KB
-
Emu_E6Z5c.stl
321.33 KB
-
Emu_E6Z5d.stl
224.08 KB
-
Emu_E6Z5e.stl
282.38 KB
-
Emu_Ovi_Eggs.csv
1.13 KB
-
Emu_Ovi_Zones.csv
790 B
-
EmuOvi_PMatrix.csv
1.20 KB
-
NCSM_33576_TW3_Z1a.stl
573.63 KB
-
NCSM_33576_TW3_Z1b.stl
462.48 KB
-
NCSM_33576_TW3_Z1c.stl
584.13 KB
-
NCSM_33576_TW3_Z1d.stl
426.78 KB
-
NCSM_33576_TW3_Z2a.stl
549.03 KB
-
NCSM_33576_TW3_Z2b.stl
534.73 KB
-
NCSM_33576_TW3_Z2c.stl
442.83 KB
-
NCSM_33576_TW3_Z2d.stl
519.93 KB
-
NCSM_33576_TW3_Z2e.stl
414.93 KB
-
NCSM_33576_TW3_Z2f.stl
428.43 KB
-
NCSM_33576_TW3_Z2g.stl
446.08 KB
-
NCSM_33576_TW3_Z3f.stl
259.08 KB
-
NCSM_33576_TW3_Z3j.stl
318.73 KB
-
NCSM_33576_TW3_Z4a.stl
585.98 KB
-
NCSM_33576_TW3_Z4b.stl
584.18 KB
-
NCSM_33576_TW3_Z4c.stl
762.88 KB
-
NCSM_33576_TW3_Z4d.stl
542.98 KB
-
NCSM_33576_TW3_Z4e.stl
662.43 KB
-
NCSM_33576_TW4_Z1a.stl
496.33 KB
-
NCSM_33576_TW4_Z1b.stl
557.98 KB
-
NCSM_33576_TW4_Z1c.stl
554.83 KB
-
NCSM_33576_TW4_Z1d.stl
616.98 KB
-
NCSM_33576_TW4_Z2a.stl
405.58 KB
-
NCSM_33576_TW4_Z2b.stl
510.78 KB
-
NCSM_33576_TW4_Z2c.stl
387.88 KB
-
NCSM_33576_TW4_Z2d.stl
444.43 KB
-
NCSM_33576_TW4_Z2e.stl
460.88 KB
-
NCSM_33576_TW4_Z2f.stl
382.78 KB
-
NCSM_33576_TW4_Z2g.stl
411.43 KB
-
NCSM_33576_TW4_Z3a.stl
431.68 KB
-
NCSM_33576_TW4_Z3b.stl
425.83 KB
-
NCSM_33576_TW4_Z3c.stl
578.98 KB
-
NCSM_33576_TW4_Z3d.stl
545.53 KB
-
NCSM_33576_TW4_Z3e.stl
289.73 KB
-
NCSM_33576_TW4_Z3f.stl
346.83 KB
-
NCSM_33576_TW4_Z3g.stl
442.33 KB
-
NCSM_33576_TW4_Z3h.stl
326.13 KB
-
NCSM_33576_TW4_Z4a.stl
346.48 KB
-
NCSM_33576_TW4_Z4b.stl
281.53 KB
-
NCSM_33576_TW4_Z4c.stl
316.63 KB
-
NCSM_33576_TW4_Z4d.stl
402.03 KB
-
NCSM_33576_TW4_Z4e.stl
297.78 KB
-
NCSM_33576_TW4_Z4f.stl
461.58 KB
-
NCSM33576_P5E1Z2a.stl
642.63 KB
-
NCSM33576_P5E1Z2b.stl
649.23 KB
-
NCSM33576_P5E1Z2d.stl
829.93 KB
-
NCSM33576_P5E1Z2e.stl
807.58 KB
-
NCSM33576_P5E1Z3a.stl
362.13 KB
-
NCSM33576_P5E1Z3b.stl
395.13 KB
-
NCSM33576_P5E1Z3c.stl
310.23 KB
-
NCSM33576_P5E1Z3d.stl
308.03 KB
-
NCSM33576_P5E1Z3e.stl
344.63 KB
-
NCSM33576_P5E1Z3f.stl
347.08 KB
-
NCSM33576_P5E1Z3g.stl
349.33 KB
-
NCSM33576_P5E1Z3h.stl
389.28 KB
-
NCSM33576_P5E1Z3i.stl
423.43 KB
-
NCSM33576_P5E1Z3j.stl
405.93 KB
-
NCSM33576_P5E1Z3k.stl
536.28 KB
-
NCSM33576_P5E1Z3l.stl
420.08 KB
-
NCSM33576_P5E1Z3m.stl
417.28 KB
-
NCSM33576_P5E1Z3n.stl
537.18 KB
-
NCSM33576_P5E1Z3o.stl
316.53 KB
-
NCSM33576_P5E1Z3p.stl
291.73 KB
-
NCSM33576_P5E1Z3q.stl
388.38 KB
-
NCSM33576_P5E1Z4a.stl
520.88 KB
-
NCSM33576_P5E1Z4b.stl
487.08 KB
-
NCSM33576_P5E1Z4c.stl
547.83 KB
-
NCSM33576_P5E1Z4d.stl
594.73 KB
-
NCSM33576_P5E1Z4e.stl
539.83 KB
-
NCSM33576_P5E1Z4f.stl
545.38 KB
-
NCSM33576_P5E1Z4g.stl
557.53 KB
-
NCSM33576_P5E1Z4h.stl
693.33 KB
-
NCSM33576_P5E1Z4i.stl
536.98 KB
-
NCSM33576_P5E1Z5a.stl
629.18 KB
-
NCSM33576_P5E1Z5b.stl
611.83 KB
-
NCSM33576_P5E1Z5c.stl
566.78 KB
-
NCSM33576_P5E1Z5e.stl
451.68 KB
-
NCSM33576_P5E1Z5f.stl
660.53 KB
-
NCSM33576_P5E1Z5g.stl
797.98 KB
-
NCSM33576_P5E1Z5h.stl
593.43 KB
-
NCSM33576_P5E1Z5i.stl
930.13 KB
-
NCSM33576_P5E1Z5j.stl
1.06 MB
-
NCSM33576_P6E1Z2a.stl
402.88 KB
-
NCSM33576_P6E1Z2b.stl
303.58 KB
-
NCSM33576_P6E1Z2c.stl
332.78 KB
-
NCSM33576_P6E1Z2d.stl
384.58 KB
-
NCSM33576_P6E1Z3a.stl
696.93 KB
-
NCSM33576_P6E1Z3b.stl
580.78 KB
-
NCSM33576_P6E1Z3c.stl
517.78 KB
-
NCSM33576_P6E1Z3d.stl
315.28 KB
-
NCSM33576_P6E1Z3e.stl
417.08 KB
-
NCSM33576_P6E1Z3f.stl
574.08 KB
-
NCSM33576_P6E1Z3g.stl
561.98 KB
-
NCSM33576_P6E1Z3h.stl
410.03 KB
-
NCSM33576_P6E1Z4g.stl
416.78 KB
-
NCSM33576_P6E1Z5a.stl
554.73 KB
-
NCSM33576_P6E1Z5b.stl
540.63 KB
-
NCSM33576_P6E1Z5c.stl
566.58 KB
-
NCSM33576_P6E1Z5d.stl
445.43 KB
-
NCSM33576_P6E1Z5e.stl
498.78 KB
-
NCSM33576_P6E1Z5f.stl
479.83 KB
-
NCSM33576_P6E1Z5g.stl
600.53 KB
-
NCSM33576_P6E1Z5h.stl
602.98 KB
-
NCSM33576_P6E1Z5i.stl
618.73 KB
-
README.md
4.24 KB
Abstract
The external surface of non-avian dinosaur eggs is not usually smooth like those of their avian descendants. Unique ornamentation patterns sculpt the exterior of the eggs, a trait that is difficult to interpret because of its scarcity in modern taxa. One avian species that does homoplastically, present similar external eggshell ornamentation to that of non-avian dinosaurs is Dromaius novaehollandiae Latham, 1790, the emu. Here we use D. novaehollandiae eggs in conjunction with a clutch of oviraptorosaurian dinosaur eggs (NCSM 33576, Macroelongatoolithus carlylei) to test new methods of quantifying external eggshell ornamentation. Currently, the only scientific language for describing and comparing ornamentation styles in fossil ootaxa is restricted to qualitative categorization, which introduces issues of subjectivity and overly broad and overlapping typification. In this study, we derived and tested a new statistical quantitative approach to quantifying ornamentation that includes two existing functions of the molaR package in R previously applied to shape quantifications of fossil teeth, and ‘Orientation’, a novel function presented as a proxy for ‘direction’, needed to capture directionality. Results demonstrate that 1) the quantitative approach provides statistical backing to gross qualitative observations; 2) statistically significant differences exist between the ornamentation in D. novaehollandiae and M. carlylei, particularly in terms of relief; and 3) intranest variation of M. carlylei can be demonstrated from harmonic mean p-value differences between different pairs of eggs. This method offers a strong platform to consolidate quantitative measures with existing qualitative categories, improve the diagnoses of ootaxa, and answer broad ecological and evolutionary questions regarding dinosaur reproduction. Moreover, wider application of the technique is encouraged for a multi-proxy quantitative analysis of any paleontological or biological surfaces.
README: Data for: Novel quantification of eggshell surfaces in Dromaius novaehollandiae with implications for the fossil eggshells of Oviraptorosauria (Dinosauria)
https://doi.org/10.5061/dryad.70rxwdc6q
Description of the data and file structure
Files and variables
File: EmuOvi_PMatrix.csv
Description: This is the taxon or NCMNS ID number followed by each egg used (egg 1 = e1 etc.)
Variables
- Harmonic Mean: combined mate-analysis value for DNE, Slope, and Orientation.
- NCSM33576_E1: first egg of the Deep Eddy M. carlylei nest.
- NCSM33576_E2: second egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E3: third egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E4: fourth egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E5: fifth egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E6: sixth egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E7: seventh egg of the Deep Eddy M. carlylei nest.
- NCSM 33576_E8: eighth egg of the Deep Eddy M. carlylei nest.
- Emu_1: first emu egg
- Emu_2: second emu egg
- Emu_3: third emu egg
- Emu_4: fourth emu egg
- Emu_5: fifth emu egg
- Emu_6: sixth emu egg
File: Emu_Ovi_Zones.csv
Description: csv file with quantitative metric values for all eggs in the study organized by egg zone
Variables
- Taxon: either emu eggs or Macroelongatoolithus carlylei (fossil)
- Zone: refers to the egg zone in correspondence with those laid out in the methods.
- Metric: one of DNE, Slope, or Orientation as calculated by molaR functions
- Values: unitless measure of the value.
File: Emu_Ovi_Eggs.csv
Description: csv file with quantitative metric values for all eggs in the study
Variables
- Taxon: either emu eggs or Macroelongatoolithus carlylei (fossil)
- Egg: which egg the value refers to (egg numbers explained above in EmuOvi_PMatrix.csv --> Variables)
- Metric: one of DNE, Slope, or Orientation as calculated by molaR functions
- Values: unitless measure of the value.
Code/software
- Initial three-dimensional scans of half to whole eggs are created in Metascan. This process and application require at least an iPhone 12, which is optimized with the addition of a 10 cm diameter ring light and 15 x magnification macro lens attachment.
- These three-dimensional objects are exported to cloud storage as .gltf files and downloaded into Blender 3.4.
- In Blender, subsections of the egg surface are extracted at a uniform size (1cm diameter) using the boolean modifier. This was repeated wherever possible on all eggs, avoiding taphonomic surface effects and overlap. Files were extracted and labelled according to the egg zone (after Simon, 2014).
- Isolated subsections were exported as .stl files.
- These .stl files were imported to MeshLab 2022.02.
- Each subsection file was standardized to 5000 triangular faces using the quadric edge collapse decimation tool.
- Each subsection file was aligned along its X-Y axis, so that the Z-axis was oriented vertically, with the eggshell surface facing up.
- Each subsection file was exported as a .ply file. These were exported to a specified folder that became the working directory for R studio.
- In R studio, required packages include molaR and Pracma. The working directory was set to where the .ply files were exported.
- The orientation/SCORE function as provided is coded, and the batch processing of .ply files is run. Orientation will run an individual file and calculate its orientation. SCORE will batch process all .ply files in the working directory and output a .csv file with orientation, DNE, and Slope values.
- Outputted values were tested in R Studio for normality using a Shapiro-Wilk test. Outliers were removed using the Inter Quartile Range. 95% confidence intervals were calculated with 1000 iterations of bootstrapping.
- Differences in the distribution patterns of DNE, Slope, and Orientation were calculated by running pairwise kolmogorov-smirnov tests of the values for each egg against each other.
- Values for a harmonic mean meta-analysis of eggs against each other in terms of DNE, Orientation, and Slope were run with the 'harmmean' function in Pracma.
Methods
To compare eggs, we measured morphometrics (egg length and width) using digital calipers. We weighed D. novaehollandiae eggs using digital scales, and calculated egg volume using the equation from Hoyt [45]. We digitized the eight fossil and six extant eggs using the application Metascan on an Apple iPhone 12 Pro, following the methods of Avrahami and Herzog [46]. We coupled the iPhone camera with a 15x macro lens and a 10 cm diameter ring light. Meshes built this way achieved comparable resolutions to μCT scans (mean pixel size of c. 11 microns), and provided a methodology that could compare D. novaehollandiae eggs with M. carlylei that could not be CT scanned at high resolution in its current nest configuration. These high-fidelity scans also compare favorably to other portable surface scanners for the relatively low relief and high detail of eggshell surface texture versus other paleontological surfaces. Completed scans were exported as .gltf files from the application, preserving all raw data including texture and coloration. These files were imported to Blender (version 3.4). Here, we subsampled the eggshell surfaces so that we had uniformly-sized (10mm diameter) sections that could be analyzed in molaR, to avoid the effects of taphonomic cracks or non-representative breaks on the surface of the eggs that could alter their original surface topography. We extracted surface sections across the eggs by adding 10 mm diameter cylindrical meshes through the surface and using the Boolean modifier to intersect cylinders with the egg surface (Fig 2A). The sections were exported as .stl files using the batch export feature and were subsequently imported into MeshLab2022.02 where they were aligned on the X-Y axis (i.e., with a vertical Z axis; Fig 2B) and decimated to 5000 triangular faces using the Quadric Edge Collapse Decimation tool. To import these into R for molaR analysis, we exported aligned surfaces as .ply files. We binned the samples from each egg into one of five zones along the long axis of the egg, consistent with those described in [47] and matching eggs as they were laid in nidus. It is worth noting that this means Zone 1 in M. carlylei is the blunt end of the egg, and Zone 5 is the acute end, but in D. novaehollandiae Zone 1 is the acute end and Zone 5 the blunt end.
To quantitatively analyze the topography of each surface, we made use of the R package molaR (version 5.3) [48]. MolaR is an analysis tool with a suite of functions developed initially for the 3D analysis of dentition, and our study represents the first use of the analysis beyond this scope. Each .ply mesh was analyzed using two of the functions existing in molaR: Dirichlet Normal Energy (DNE) [49] and Slope [50]. These two metrics provide proxies for surface ‘complexity’ and ‘relief’ respectively. We also modified the Orientation Patch Count function [51] to write a new function called ‘Orientation’, which analyzes the relative surface area of faces occupying each of the eight 45 directional bins (Fig 2C) to calculate both the direction and strength of orientation (pole-to-pole along the egg long axis or around the egg short axis; full details below). We used pairwise, nonparametric, two-sample Kolmogrov-Smirnov tests to test the statistical significance of differences between distributions, and Welch’s two-sample T-test for mean differences, between the D. novaehollandiae eggs and M. carlylei and nests. For each metric, we used both full datasets and datasets averaged per egg zone to reduce the likelihood of sampling size bias. Mean values for DNE, Slope, and Orientation are reported for each zone to represent trends across the egg, as an average of sub-sampling within these zones that was intended only to give uniform, unaltered meshes. We calculated the inter-relationship of metrics using Pearson’s correlation coefficient. We calculated harmonic mean p-values [52,53] to meta-analyze the p-values found for the three metrics. We selected a harmonic mean over a meta-analysis like Fisher’s method [53] to account for the non-independence of DNE, Slope, and Orientation values.
‘Orientation’ is a new function in the molaR package [48] that draws on the existing Orientation Patch Count function (‘OPC’). The existing OPC function calculates the number of patches (where a patch is three or more triangles on a 3D mesh) that fall into each 45-degree bin about the X-Y plane (Figure 2D). This measure alone does not distinguish patch count size because a patch can incorporate three adjoining faces but also orders of magnitude more faces, and these are calculated by OPC as a single patch of equal value. To account for directionality, we use the surface area value from the ‘Patch Details’ output of this function, which calculates the total surface area occupied by faces in each bin. The function then calculates the ratio of surface area in the bins oriented along the long axis (bins 1, 4, 5, and 8) to those oriented around the short axis (bins 2, 3, 6, 7). An additional calculation is added to this ratio to produce a scale from -100 to +100 that indicates both the direction (positive along the long axis; negative around the short axis) and strength (higher numbers correlate to stronger directionality) of the orientation. This function will be available in the next update of the molaR package. We include functions both for individual meshes (‘Orientation)’ and a batch export to a .csv file with the DNE and Slope values, for the Statistical Complexity, Orientation, and Relief of Eggshell (SCORE).