Data from: Destructive disinfection of infected brood prevents systemic disease spread in ant colonies
Data files
Sep 21, 2018 version files 363.58 KB
-
Figure 1–Source Data.xlsx
-
Figure 2–Source Data.xlsx
-
Figure 3–Source Data.xlsx
-
Figure 4–Source Data.xlsx
-
Source data 5.xls
Abstract
In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen’s non-contagious incubation period, utilising chemical ‘sickness cues’ emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.