Skip to main content
Dryad

Data from: Correction of preferred-orientation induced distortion in cryo-electron microscopy maps

Data files

Jun 19, 2024 version files 1.17 GB

Abstract

Reconstruction maps of cryo-electron microscopy (cryo-EM) exhibit distortion when the cryo-EM dataset is incomplete, usually caused by unevenly distributed orientations. Prior efforts had been attempted to address this preferred orientation problem using tilt-collection strategy, modifications to grids or to air-water-interfaces. However, these approaches often require time-consuming experiments and the effect was always protein dependent. Here, we developed a procedure containing removing mis-aligned particles and an iterative reconstruction method based on signal-to-noise ratio of Fourier component to correct such distortion by recovering missing data using a purely computational algorithm. This procedure called Signal-to-Noise Ratio Iterative Reconstruction Method (SIRM) was applied on incomplete datasets of various proteins to fix distortion in cryo-EM maps and to a more isotropic resolution. In addition, SIRM provides a better reference map for further reconstruction refinements, resulting in an improved alignment, which ultimately improves map quality and benefits model building.