Skip to main content
Dryad

Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths

Cite this dataset

Kramer, Netanel et al. (2022). Morpho-functional traits of the coral Stylophora pistillata enhance light capture for photosynthesis at mesophotic depths [Dataset]. Dryad. https://doi.org/10.5061/dryad.7d7wm37w7

Abstract

The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4-5 m) and mesophotic (45-50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite-scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures and the results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light limited environments.