Skip to main content
Dryad logo

Data from: Computational Modeling of Gluteus Medius Muscle Moment Arm in Caviomorph Rodents Reveals Ecomorphological Specializations

Citation

Löffler, Lukas; Wölfer, Jan; Gavrilei, Flavia; Nyakatura, John (2022), Data from: Computational Modeling of Gluteus Medius Muscle Moment Arm in Caviomorph Rodents Reveals Ecomorphological Specializations, Dryad, Dataset, https://doi.org/10.5061/dryad.7d7wm37xm

Abstract

The data stored in this repository allow the reproduction of the study described in the following. Vertebrate musculoskeletal locomotion is realized through lever-arm systems. The instantaneous muscle moment arm (IMMA), which is expected to be under selective pressure and thus of interest for ecomorphological studies, is a key aspect of these systems. The IMMA changes with joint motion and its length change is technically difficult to acquire—usually, proxies such as osteological in-levers are used instead—and has not been compared in a larger phylogenetic ecomorphology framework, yet. We used 18 species of the ecologically diverse clade of caviomorph rodents to test whether its diversity is reflected in the IMMA of the hip extensor M. gluteus medius. A large IMMA is beneficial for torque generation; a small IMMA facilitates fast joint excursion. We expected large IMMAs in scansorial species, small IMMAs in fossorial species, and somewhat intermediate IMMAs in cursorial species, depending on the relative importance of acceleration and joint angular velocity. We modelled the IMMA over the entire range of possible hip extensions and applied macroevolutionary model comparison to selected joint poses. We also obtained the osteological in-lever of the M. gluteus medius to compare it to the IMMA. At small hip extension, the IMMA was largest on average in scansorial species, while the other two lifestyles were similar. We interpret this as an emphasized need for increased hip joint torque when climbing on inclines, especially in a crouched posture. Cursorial species might benefit from a fast joint excursion, but their similarity with the fossorial species is difficult to interpret and could hint at ecological similarities. At larger extension angles, cursorial species displayed the second-largest IMMAs after scansorial species. The larger IMMA optimum results in powerful hip extension which coincides with forward acceleration at late stance beneficial for climbing, jumping, and escaping predators. This might be less relevant for a fossorial lifestyle. The results of the in-lever only matched the IMMA results of larger hip extension angles, suggesting that the modelling of the IMMA provides more nuanced insights into adaptations of musculoskeletal lever arm systems than this osteological proxy.

Methods

The files of this dataset contain bone models complete with 3D representations of the M. gluteus medius and its moment arm to the hip joint for 18 caviomorph rodent species. The files allow the assessment of instantaneous changes of moment arm lengths during modelled joint excursions. The bone models have been derived from CT scanning. All specimen numbers are provided in the main article.

Usage Notes

We provide the data in two data formats:

A) .fbx files can be opened with free and open-source 3D animation software Blender.

B) .mb files can only be opened with proprietary software Autodesk Maya. However, for non-commercial purposes, Autodesk offers the usage of the software free of charge for members of educational institutions. We suggest using this software to work with the provided data.