Skip to main content
Dryad logo

Data from: Temperature drives Zika virus transmission: evidence from empirical and mathematical models

Citation

Tesla, Blanka et al. (2021), Data from: Temperature drives Zika virus transmission: evidence from empirical and mathematical models, Dryad, Dataset, https://doi.org/10.5061/dryad.7hj6q4c

Abstract

Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period, and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29oC, and had a thermal range of 22.7oC - 34.7oC. Thus, as temperatures move toward the predicted thermal optimum (29oC) due to climate change, urbanization, or seasonally, Zika could expand north and into longer seasons. In contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5oC warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.

Methods

Please refer to the published manuscript for methods associated with data collection and analysis.

Usage Notes

Funding

National Science Foundation, Award: NSF RAPID 1640780

National Science Foundation, Award: NSF DEB-1518681

Location

global