Data from: Frequent fires prime plant developmental responses to burning
Data files
Aug 01, 2019 version files 66.85 KB
-
Trait.data.xlsx
66.85 KB
Abstract
Coping with temporal variation in fire requires plants to have plasticity in traits that promote persistence, but how plastic responses to current conditions are affected by past fire exposure remains unknown. We investigate phenotypic divergence between populations of four resprouting grasses exposed to differing experimental fire regimes (annually-burnt or unburnt for >35 years), and test whether divergence persists after plants are grown in a common environment for one year. Traits relating to flowering and biomass allocation were measured before plants were experimentally burnt, and their regrowth was tracked. Genetic differentiation between populations was investigated for a subset of individuals. Historic fire frequency influenced traits relating to flowering and below-ground investment. Previously burnt plants produced more inflorescences and invested proportionally more biomass below ground, suggesting greater capacity for recruitment and resprouting than unburnt individuals. Branch-scale regrowth rate did not differ between treatments, but prior fire exposure enhanced total regrown biomass in two species. We found no consistent genetic differences between populations suggesting trait differences arose from developmental plasticity. Grass development is influenced by prior fire exposure, independent of current environmental conditions. This priming response to fire, resulting in adaptive trait changes, may produce communities more resistant to future fire regime changes.