Skip to main content
Dryad

Data for the paper "Experimental evolution of post-ingestive nutritional compensation in response to a nutrient-poor diet"

Abstract

The geometric framework of nutrition predicts that populations restricted to a single imbalanced diet should evolve post-ingestive nutritional compensation mechanisms bringing the blend of assimilated nutrients closer to physiological optimum. The evolution of such nutritional compensation is thought to be mainly driven by the ratios of major nutrients rather than overall nutritional content of the diet. We report experimental evolution of divergence in post-ingestive nutritional compensation in populations of Drosophila melanogaster adapted to diets that contained identical imbalanced nutrient ratios but differed in total nutrient concentration. Larvae from "Selected" populations maintained for over 200 generations on a nutrient-poor diet with 1:13.5 protein:carbohydrate ratio showed enhanced assimilation of nitrogen from yeasts and reduced assimilation of carbon from sucrose than "Control" populations evolved on a diet with the same nutrient ratio but 4-fold greater nutrient concentration. Compared to the Controls, the Selected larvae also accumulated less triglycerides relative to protein. This implies that the Selected populations evolved a higher assimilation rate of amino-acids from the poor imbalanced diet and a lower assimilation of carbohydrates than Controls. Thus, the evolution of nutritional compensation may be driven by changes in total nutrient abundance, even if the ratios of different nutrients remain unchanged.