Skip to main content
Dryad logo

Data from: Deformability assessment of waterborne protozoa using a microfluidic-enabled force microscopy probe

Citation

McGrath, John S. et al. (2016), Data from: Deformability assessment of waterborne protozoa using a microfluidic-enabled force microscopy probe, Dryad, Dataset, https://doi.org/10.5061/dryad.8d8v4

Abstract

Many modern filtration technologies are incapable of the complete removal of Cryptosporidium oocysts from drinking-water. Consequently, Cryptosporidium-contaminated drinking-water supplies can severely implicate both water utilities and consumers. Existing methods for the detection of Cryptosporidium in drinking-water do not discern between non-pathogenic and pathogenic species, nor between viable and non-viable oocysts. Using FluidFM, a novel force spectroscopy method employing microchannelled cantilevers for single-cell level manipulation, we assessed the size and deformability properties of two species of Cryptosporidium that pose varying levels of risk to human health. A comparison of such characteristics demonstrated the ability of FluidFM to discern between Cryptosporidium muris and Cryptosporidium parvum with 86% efficiency, whilst using a measurement throughput which exceeded 50 discrete oocysts per hour. In addition, we measured the deformability properties for untreated and temperature-inactivated oocysts of the highly infective, human pathogenic C. parvum to assess whether deformability may be a marker of viability. Our results indicate that untreated and temperature-inactivated C. parvum oocysts had overlapping but significantly different deformability distributions.

Usage Notes