Skip to main content
Dryad logo

Data from: Sex-biased gene flow among elk in the greater Yellowstone ecosystem

Citation

Hand, Brian K. et al. (2013), Data from: Sex-biased gene flow among elk in the greater Yellowstone ecosystem, Dryad, Dataset, https://doi.org/10.5061/dryad.8g118

Abstract

We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial (mt)DNA control region of 380 elk from eight populations. Analysis revealed high mtDNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mtDNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (m_m/m_f = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mtDNA pair-wise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel's r = 0.274, P = 0.168). Large mtDNA genetic distances (e.g. FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male versus female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species.

Usage Notes