Skip to main content
Dryad

Data from: Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America

Cite this dataset

Dean, Christopher; Allison, Peter; Hampson, Gary; Hill, Jon (2020). Data from: Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America [Dataset]. Dryad. https://doi.org/10.5061/dryad.8kr068k

Abstract

Preferential dissolution of the biogenic carbonate polymorph aragonite promotes preservational bias in shelly marine faunas. Whilst field studies have documented the impact of preferential aragonite dissolution on fossil molluscan diversity, its impact on regional and global biodiversity metrics is debated. Epicontinental seas are especially prone to conditions which both promote and inhibit preferential dissolution, which may result in spatially extensive zones with variable preservation. Here we present a multi-faceted evaluation of aragonite dissolution within the late Cretaceous Western Interior Seaway of North America. Occurrence data of molluscs from two time intervals (Cenomanian-Turonian boundary, early Campanian) are plotted on new high-resolution paleogeographies to assess aragonite preservation within the seaway. Fossil occurrences, diversity estimates and sampling probabilities for calcitic and aragonitic fauna were compared in zones defined by depth and distance from the seaway margins. Apparent range sizes, which could be influenced by differential preservation potential of aragonite between separate localities, were also compared. Our results are consistent with exacerbated aragonite dissolution within specific depth zones for both time slices, with aragonitic bivalves additionally showing a statistically significant decrease in range size compared to calcitic fauna within carbonate-dominated Cenomanian-Turonian strata. However, we are unable to conclusively show that aragonite dissolution impacted diversity estimates. Therefore, whilst aragonite dissolution is likely to have affected the preservation of fauna in specific localities, time averaging and instantaneous preservation events preserve regional biodiversity. Our results suggest that the spatial expression of taphonomic biases should be an important consideration for paleontologists working on paleobiogeographic problems.

Usage notes

Location

North America